30 Most Down Articles
Published in last 1 year| In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

Published in last 1 year
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Lithium Ion Batteries Operated at $-100\,^{\circ}\!$C
Jianli Gai, Jirong Yang, Wei Yang, Quan Li, Xiaodong Wu, and Hong Li
Chin. Phys. Lett.    2023, 40 (8): 086101 .   DOI: 10.1088/0256-307X/40/8/086101
Abstract   HTML   PDF (1729KB)
Enabling lithium-ion batteries (LIBs) to operate in a wider temperature range, e.g., as low or high as possible or capable of both, is an urgent need and shared goal. Here we report, for the first time, a low-temperature electrolyte consisting of traditional ethylene carbonate, methyl acetate, butyronitrile solvents, and 1 M LiPF$_{6}$ salt, attributed to its very low freezing point ($T_{\rm f} = -126.3\,^{\circ}\!$C) and high ion conductivity at extremely low temperatures (0.21 mS/cm at $-100\,^{\circ}\!$C), successfully extends the service temperature of a practical 9.6 Ah LIB down to $-100\,^{\circ}\!$C (49.6% capacity retention compared to that at room temperature), which is the lowest temperature reported for practical cells so far as we know, and is lower than the lowest natural temperature ($-89.2\,^{\circ}\!$C) recorded on earth. Meanwhile, the high-temperature performance of lithium-ion batteries is not affected. The capacity retention is 88.2% and 83.4% after 800 cycles at 25$\,^{\circ}\!$C and 45$\,^{\circ}\!$C, respectively. The progress also makes LIB a proper power supplier for space vehicles in astronautic explorations.
Highly Tunable Perpendicular Magnetic Anisotropy and Anisotropic Magnetoresistance in Ru-Doped La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ Epitaxial Films
Enda Hua, Kunjie Dai, Qing Wang, Huan Ye, Kuan Liu, Jinfeng Zhang, Jingdi Lu, Kai Liu, Feng Jin, Lingfei Wang, and Wenbin Wu
Chin. Phys. Lett.    2023, 40 (7): 077501 .   DOI: 10.1088/0256-307X/40/7/077501
Abstract   HTML   PDF (1899KB)
As a prototypical half-metallic ferromagnet, La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ (LSMO) has been extensively studied due to its versatile physical properties and great potential in spintronic applications. However, the weak perpendicular magnetic anisotropy (PMA) limits the controllability and detection of magnetism in LSMO, thus hindering the realization of oxide-based spintronic devices with low energy consumption and high integration level. Motivated by this challenge, we develop an experimental approach to enhance the PMA of LSMO epitaxial films. By cooperatively introducing 4$d$ Ru doping and a moderate compressive strain, the maximum uniaxial magnetic anisotropy in Ru-doped LSMO can reach $3.0 \times 10^{5}$ J/m$^{3}$ at 10 K. Furthermore, we find a significant anisotropic magnetoresistance effect in these Ru-doped LSMO films, which is dominated by the strong PMA. Our findings offer an effective pathway to harness and detect the orientations of magnetic moments in LSMO films, thus promoting the feasibility of oxide-based spintronic devices, such as spin valves and magnetic tunnel junctions.
High-Temperature Superconductivity in La$_3$Ni$_2$O$_7$
Kun Jiang, Ziqiang Wang, and Fu-Chun Zhang
Chin. Phys. Lett.    2024, 41 (1): 017402 .   DOI: 10.1088/0256-307X/41/1/017402
Abstract   HTML   PDF (1250KB)
Motivated by the recent discovery of high-temperature superconductivity in bilayer La$_3$Ni$_2$O$_7$ under pressure, we study its electronic properties and superconductivity due to strong electron correlation. Using the inversion symmetry, we decouple the low-energy electronic structure into block-diagonal symmetric and antisymmetric sectors. It is found that the antisymmetric sector can be reduced to a one-band system near half filling, while the symmetric bands occupied by about two electrons are heavily overdoped individually. Using the strong coupling mean field theory, we obtain strong superconducting pairing with $B_{\rm 1g}$ symmetry in the antisymmetric sector. We propose that due to the spin-orbital exchange coupling between the two sectors, $B_{\rm 1g}$ pairing is induced in the symmetric bands, which in turn boosts the pairing gap in the antisymmetric band and enhances the high-temperature superconductivity with a congruent d-wave symmetry in pressurized La$_3$Ni$_2$O$_7$.
Dark Korteweg–De Vrise System and Its Higher-Dimensional Deformations
Si-Yu Zhu, De-Xing Kong, and Sen-Yue Lou
Chin. Phys. Lett.    2023, 40 (8): 080201 .   DOI: 10.1088/0256-307X/40/8/080201
Abstract   HTML   PDF (357KB)
The new dimensional deformation approach is proposed to generate higher-dimensional analogues of integrable systems. An arbitrary ($K$+1)-dimensional integrable Korteweg–de Vries (KdV) system, as an example, exhibiting symmetry, is illustrated to arise from a reconstructed deformation procedure, starting with a general symmetry integrable (1+1)-dimensional dark KdV system and its conservation laws. Physically, the dark equation systems may be related to dark matter physics. To describe nonlinear physics, both linear and nonlinear dispersions should be considered. In the original lower-dimensional integrable systems, only liner or nonlinear dispersion is included. The deformation algorithm naturally makes the model also include the linear dispersion and nonlinear dispersion.
Chiral Dirac Fermion in a Collinear Antiferromagnet
Ao Zhang, Ke Deng, Jieming Sheng, Pengfei Liu, Shiv Kumar, Kenya Shimada, Zhicheng Jiang, Zhengtai Liu, Dawei Shen, Jiayu Li, Jun Ren, Le Wang, Liang Zhou, Yoshihisa Ishikawa, Takashi Ohhara, Qiang Zhang, Garry McIntyre, Dehong Yu, Enke Liu, Liusuo Wu, Chaoyu Chen, and Qihang Liu
Chin. Phys. Lett.    2023, 40 (12): 126101 .   DOI: 10.1088/0256-307X/40/12/126101
Abstract   HTML   PDF (21962KB)
In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral “Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden $SU(2)$ symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb$_{3}$S$_{6}$. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions. Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb$_{3}$S$_{6}$, paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.
A High-Randomness and High-Stability Electronic Quantum Random Number Generator without Post Processing
Yu-Xuan Liu, Ke-Xin Huang, Yu-Ming Bai, Zhe Yang, and Jun-Lin Li
Chin. Phys. Lett.    2023, 40 (7): 070303 .   DOI: 10.1088/0256-307X/40/7/070303
Abstract   HTML   PDF (1021KB)
Random numbers are one of the key foundations of cryptography. This work implements a discrete quantum random number generator (QRNG) based on the tunneling effect of electrons in an avalanche photo diode. Without any post-processing and conditioning, this QRNG can output raw sequences at a rate of 100 Mbps. Remarkably, the statistical min-entropy of the 8,000,000 bits sequence reaches 0.9944 bits/bit, and the min-entropy validated by NIST SP 800-90B reaches 0.9872 bits/bit. This metric is currently the highest value we have investigated for QRNG raw sequences. Moreover, this QRNG can continuously and stably output raw sequences with high randomness over extended periods. The system produced a continuous output of 1,174 Gbits raw sequence for a duration of 11,744 s, with every 8 Mbits forming a unit to obtain a statistical min-entropy distribution with an average value of 0.9892 bits/bit. The statistical min-entropy of all data (1,174 Gbits) achieves the value of 0.9951 bits/bit. This QRNG can produce high-quality raw sequences with good randomness and stability. It has the potential to meet the high demand in cryptography for random numbers with high quality.
Stark Tuning of Telecom Single-Photon Emitters Based on a Single Er$^{3+}$
Jian-Yin Huang, Peng-Jun Liang, Liang Zheng, Pei-Yun Li, You-Zhi Ma, Duan-Chen Liu, Jing-Hui Xie, Zong-Quan Zhou, Chuan-Feng Li, and Guang-Can Guo
Chin. Phys. Lett.    2023, 40 (7): 070301 .   DOI: 10.1088/0256-307X/40/7/070301
Abstract   HTML   PDF (2427KB)
The implementation of scalable quantum networks requires photons at the telecom band and long-lived spin coherence. The single Er$^{3+}$ in solid-state hosts is an important candidate that fulfills these critical requirements simultaneously. However, to entangle distant Er$^{3+}$ ions through photonic connections, the emission frequency of individual Er$^{3+}$ in solid-state matrix must be the same, which is challenging because the emission frequency of Er$^{3+}$ depends on its local environment. Herein, we propose and experimentally demonstrate the Stark tuning of the emission frequency of a single Er$^{3+}$ in a Y$_2$SiO$_5$ crystal by employing electrodes interfaced with a silicon photonic crystal cavity. We obtain a Stark shift of 182.9$\pm 0.8$ MHz, which is approximately 27 times of the optical emission linewidth, demonstrating promising applications in tuning the emission frequency of independent Er$^{3+}$ into the same spectral channels. Our results provide a useful solution for construction of scalable quantum networks based on single Er$^{3+}$ and a universal tool for tuning emission of individual rare-earth ions.
Stochastic Gradient Descent and Anomaly of Variance-Flatness Relation in Artificial Neural Networks
Xia Xiong, Yong-Cong Chen, Chunxiao Shi, and Ping Ao
Chin. Phys. Lett.    2023, 40 (8): 080202 .   DOI: 10.1088/0256-307X/40/8/080202
Abstract   HTML   PDF (1487KB)
Stochastic gradient descent (SGD), a widely used algorithm in deep-learning neural networks, has attracted continuing research interests for the theoretical principles behind its success. A recent work reported an anomaly (inverse) relation between the variance of neural weights and the landscape flatness of the loss function driven under SGD [Feng Y and Tu Y Proc. Natl. Acad. Sci. USA 118 e2015617118 (2021)}]. To investigate this seeming violation of statistical physics principle, the properties of SGD near fixed points are analyzed with a dynamic decomposition method. Our approach recovers the true “energy” function under which the universal Boltzmann distribution holds. It differs from the cost function in general and resolves the paradox raised by the anomaly. The study bridges the gap between the classical statistical mechanics and the emerging discipline of artificial intelligence, with potential for better algorithms to the latter.
Ultrafast Condensed Matter Physics at Attoseconds
Shi-Qi Hu and Sheng Meng
Chin. Phys. Lett.    2023, 40 (11): 117801 .   DOI: 10.1088/0256-307X/40/11/117801
Abstract   HTML   PDF (22337KB)
Our understanding of how photons couple to different degrees of freedom in solids forms the bedrock of ultrafast physics and materials sciences. In this review, the emergent ultrafast dynamics in condensed matter at the attosecond timescale have been intensively discussed. In particular, the focus is put on recent developments of attosecond dynamics of charge, exciton, and magnetism. New concepts and indispensable role of interactions among multiple degrees of freedom in solids are highlighted. Applications of attosecond electronic metrology and future prospects toward attosecond dynamics in condensed matter are further discussed. These pioneering studies promise future development of advanced attosecond science and technology such as attosecond lasers, laser medical engineering, and ultrafast electronic devices.
$e^+ e^- \to \varLambda^+_c \bar{\varLambda}^-_c$ Cross Sections and the $\varLambda_c^+$ Electromagnetic Form Factors within the Extended Vector Meson Dominance Model
Cheng Chen, Bing Yan, and Ju-Jun Xie
Chin. Phys. Lett.    2024, 41 (2): 021302 .   DOI: 10.1088/0256-307X/41/2/021302
Abstract   HTML   PDF (1564KB)
Within the extended vector meson dominance model, we investigate the $e^+ e^- \to \varLambda^+_c \bar{\varLambda}^-_c$ reaction and the electromagnetic form factors of the charmed baryon $\varLambda_c^+$. The model parameters are determined by fitting them to the cross sections of the process $e^+e^-\rightarrow \varLambda_c^+ \bar{\varLambda}_c^-$ and the magnetic form factor $|G_{\scriptscriptstyle{\rm M}}|$ of $\varLambda^+_c$. By considering four charmonium-like states, called $\psi(4500)$, $\psi(4660)$, $\psi(4790)$, and $\psi(4900)$, we can well describe the current data on the $e^+ e^- \to \varLambda^+_c \bar{\varLambda}^-_c$ reaction from the reaction threshold up to $4.96$ GeV. In addition to the total cross sections and $|G_{\scriptscriptstyle{\rm M}}|$, the ratio $|G_{\scriptscriptstyle{\rm E}}/G_{\scriptscriptstyle{\rm M}}|$ and the effective form factor $|G_{\mathrm{eff}}|$ for $\varLambda^+_c$ are also calculated, and found that these calculations are consistent with the experimental data. Within the fitted model parameters, we have also estimated the charge radius of the charmed $\varLambda_c^+$ baryon.
Enhanced Magnetic Interaction between Ga and Fe in Two-Dimensional van der Waals Ferromagnetic Crystal Fe$_{3}$GaTe$_{2}$
Heming Zha, Wei Li, Gaojie Zhang, Wenjing Liu, Liwei Deng, Qi Jiang, Mao Ye, Hao Wu, Haixin Chang, and Shan Qiao
Chin. Phys. Lett.    2023, 40 (8): 087501 .   DOI: 10.1088/0256-307X/40/8/087501
Abstract   HTML   PDF (3878KB)
Fe$_{3}$GaTe$_{2}$, a recently discovered van der Waals ferromagnetic crystal with the highest Curie temperature and strong perpendicular magnetic anisotropy among two-dimensional (2D) magnetic materials, has attracted significant attention and makes it a promising candidate for next-generation spintronic applications. Compared with Fe$_{3}$GeTe$_{2}$, which has the similar crystal structure, the mechanism of the enhanced ferromagnetic properties in Fe$_{3}$GaTe$_{2}$ is still unclear and needs to be investigated. Here, by using x-ray magnetic circular dichroism measurements, we find that both Ga and Te atoms contribute to the total magnetic moment of the system with antiferromagnetic coupling to Fe atoms. Our first-principles calculations reveal that Fe$_{3}$GaTe$_{2}$ has van Hove singularities at the Fermi level in nonmagnetic state, resulting in the magnetic instability of the system and susceptibility to magnetic phase transitions. In addition, the calculation results about the density of states in ferromagnetic states of two materials suggest that the exchange interaction between Fe atoms is strengthened by replacing Ge atoms with Ga atoms. These findings indicate the increase of both the itinerate and local moments in Fe$_{3}$GaTe$_{2}$ in view of Stoner and exchange interaction models, which results in the enhancement of the overall magnetism and a higher Curie temperature. Our work provides insight into the underlying mechanism of Fe$_{3}$GaTe$_{2}$'s remarkable magnetic properties and has important implications for searching 2D materials with expected magnetic properties in the future.
Engineering Interlayer Hybridization in Energy Space via Dipolar Overlayers
Bin Shao, Xiao Jiang, Jan Berges, Sheng Meng, and Bing Huang
Chin. Phys. Lett.    2023, 40 (8): 087303 .   DOI: 10.1088/0256-307X/40/8/087303
Abstract   HTML   PDF (6860KB)
The interlayer hybridization (IH) of van der Waals (vdW) materials is thought to be mostly associated with the unignorable interlayer overlaps of wavefunctions ($t$) in real space. Here, we develop a more fundamental understanding of IH by introducing a new physical quantity, the IH admixture ratio $\alpha$. Consequently, an exotic strategy of IH engineering in energy space can be proposed, i.e., instead of changing $t$ as commonly used, $\alpha$ can be effectively tuned in energy space by changing the on-site energy difference (${2\varDelta}$) between neighboring-layer states. In practice, this is feasible via reshaping the electrostatic potential of the surface by deposing a dipolar overlayer, e.g., crystalline ice. Our first-principles calculations unveil that IH engineering via adjusting ${2\varDelta}$ can greatly tune interlayer optical transitions in transition-metal dichalcogenide bilayers, switch different types of Dirac surface states in Bi$_{2}$Se$_{3}$ thin films, and control magnetic phase transition of charge density waves in 1H/1T-TaS$_{2}$ bilayers, opening new opportunities to govern the fundamental optoelectronic, topological, and magnetic properties of vdW systems beyond the traditional interlayer distance or twisting engineering.
Signature of Superconductivity in Pressurized La$_{4}$Ni$_{3}$O$_{10}$
Qing Li, Ying-Jie Zhang, Zhe-Ning Xiang, Yuhang Zhang, Xiyu Zhu, and Hai-Hu Wen
Chin. Phys. Lett.    2024, 41 (1): 017401 .   DOI: 10.1088/0256-307X/41/1/017401
Abstract   HTML   PDF (4454KB)
The discovery of high-temperature superconductivity near 80 K in bilayer nickelate La$_{3}$Ni$_{2}$O$_{7}$ under high pressures has renewed the exploration of superconducting nickelate in bulk materials. The extension of superconductivity in other nickelates in a broader family is also essential. Here, we report the experimental observation of superconducting signature in trilayer nickelate La$_{4}$Ni$_{3}$O$_{10}$ under high pressures. By using a modified sol-gel method and post-annealing treatment under high oxygen pressure, we successfully obtained polycrystalline La$_{4}$Ni$_{3}$O$_{10}$ samples with different transport behaviors at ambient pressure. Then we performed high-pressure electrical resistance measurements on these samples in a diamond-anvil-cell apparatus. Surprisingly, the signature of possible superconducting transition with a maximum transition temperature ($T_{\rm c}$) of about 20 K under high pressures is observed, as evidenced by a clear drop of resistance and the suppression of resistance drops under magnetic fields. Although the resistance drop is sample-dependent and relatively small, it appears in all of our measured samples. We argue that the observed superconducting signal is most likely to originate from the main phase of La$_{4}$Ni$_{3}$O$_{10}$. Our findings will motivate the exploration of superconductivity in a broader family of nickelates and shed light on the understanding of the underlying mechanisms of high-$T_{\rm c}$ superconductivity in nickelates.
Twin-Capture Rydberg State Excitation Enhanced with Few-Cycle Laser Pulses
Jing Zhao, Jinlei Liu, Xiaowei Wang, and Zengxiu Zhao
Chin. Phys. Lett.    2024, 41 (1): 013201 .   DOI: 10.1088/0256-307X/41/1/013201
Abstract   HTML   PDF (2827KB)
Quantum excitation is usually regarded as a transient process occurring instantaneously, leaving the underlying physics shrouded in mystery. Recent research shows that Rydberg-state excitation with ultrashort laser pulses can be investigated and manipulated with state-of-the-art few-cycle pulses. We theoretically find that the efficiency of Rydberg state excitation can be enhanced with a short laser pulse and modulated by varying the laser intensities. We also uncover new facets of the excitation dynamics, including the launching of an electron wave packet through strong-field ionization, the re-entry of the electron into the atomic potential and the crucial step where the electron makes a U-turn, resulting in twin captures into Rydberg orbitals. By tuning the laser intensity, we show that the excitation of the Rydberg state can be coherently controlled on a sub-optical-cycle timescale. Our work paves the way toward ultrafast control and coherent manipulation of Rydberg states, thus benefiting Rydberg-state-based quantum technology.
Moiré Synaptic Transistor for Homogeneous-Architecture Reservoir Computing
Pengfei Wang, Moyu Chen, Yongqin Xie, Chen Pan, Kenji Watanabe, Takashi Taniguchi, Bin Cheng, Shi-Jun Liang, and Feng Miao
Chin. Phys. Lett.    2023, 40 (11): 117201 .   DOI: 10.1088/0256-307X/40/11/117201
Abstract   HTML   PDF (8946KB)
Reservoir computing has been considered as a promising intelligent computing paradigm for effectively processing complex temporal information. Exploiting tunable and reproducible dynamics in the single electronic device have been desired to implement the “reservoir” and the “readout” layer of reservoir computing system. Two-dimensional moiré materials, with an artificial lattice constant many times larger than the atomic length scale, are one type of most studied artificial quantum materials in community of material science and condensed-matter physics over the past years. These materials are featured with gate-tunable periodic potential and electronic correlation, thus varying the electric field allows the electrons in the moiré potential per unit cell to exhibit distinct and reproducible dynamics, showing great promise in robust reservoir computing. Here, we report that a moiré synaptic transistor can be used to implement the reservoir computing system with a homogeneous reservoir-readout architecture. The synaptic transistor is fabricated based on an h-BN/bilayer graphene/h-BN moiré heterostructure, exhibiting ferroelectricity-like hysteretic gate voltage dependence of resistance. Varying the magnitude of the gate voltage enables the moiré transistor to switch between long-term memory and short-term memory with nonlinear dynamics. By employing the short- and long-term memories as the reservoir nodes and weights of the readout layer, respectively, we construct a full-moiré physical neural network and demonstrate that the classification accuracy of 90.8% can be achieved for the MNIST (Modified National Institute of Standards and Technology) handwritten digits database. Our work would pave the way towards the development of neuromorphic computing based on moiré materials.
Visualizing the Local Twist Angle Variation within and between Domains of Twisted Bilayer Graphene
Jiawei Hu, Shiyu Zhu, Qianying Hu, Yunhao Wang, Chengmin Shen, Haitao Yang, Xiaoshan Zhu, Qing Huan, Yang Xu, and Hong-Jun Gao
Chin. Phys. Lett.    2024, 41 (3): 037401 .   DOI: 10.1088/0256-307X/41/3/037401
Abstract   HTML   PDF (14572KB)
Moiré superlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena, which are highly sensitive to twist angles, including both the global value and the spatial inhomogeneity. However, only a few methods provide spatial-resolved information for characterizing local twist angle distribution. Here we directly visualize the variations of local twist angles and angle-dependent evolutions of the quantum states in twisted bilayer graphene by scanning microwave impedance microscopy (sMIM). Spatially resolved sMIM measurements reveal a pronounced alteration in the local twist angle, approximately 0.3$^{\circ}$ over several micrometers in some cases. The variation occurs not only when crossing domain boundaries but also occasionally within individual domains. Additionally, the full-filling density of the flat band experiences a change of over $2 \times 10^{11}$ cm$^{-2}$ when crossing domain boundaries, aligning consistently with the twist angle inhomogeneity. Moreover, the correlated Chern insulators undergo variations in accordance with the twist angle, gradually weakening and eventually disappearing as the deviation from the magic angle increases. Our findings signify the crucial role of twist angles in shaping the distribution and existence of quantum states, establishing a foundational cornerstone for advancing the study of twisted two-dimensional materials.
Giant 2D Skyrmion Topological Hall Effect with Ultrawide Temperature Window and Low-Current Manipulation in 2D Room-Temperature Ferromagnetic Crystals
Gaojie Zhang, Qingyuan Luo, Xiaokun Wen, Hao Wu, Li Yang, Wen Jin, Luji Li, Jia Zhang, Wenfeng Zhang, Haibo Shu, and Haixin Chang
Chin. Phys. Lett.    2023, 40 (11): 117501 .   DOI: 10.1088/0256-307X/40/11/117501
Abstract   HTML   PDF (10784KB)
The discovery and manipulation of topological Hall effect (THE), an abnormal magnetoelectric response mostly related to the Dzyaloshinskii–Moriya interaction (DMI), are promising for next-generation spintronic devices based on topological spin textures such as magnetic skyrmions. However, most skyrmions and THE are stabilized in a narrow temperature window either below or over room temperature with high critical current manipulation. It is still elusive and challenging to achieve large THE with both wide temperature window till room temperature and low critical current manipulation. Here, using controllable, naturally oxidized sub-20 and sub-10 nm 2D van der Waals room-temperature ferromagnetic Fe$_{3}$GaTe$_{2-x}$ crystals, we report robust 2D skyrmion THE with ultrawide temperature window ranging in three orders of magnitude from 2 to 300 K, in combination with giant THE of $\sim$ 5.4 $µ \Omega\cdot$cm at 10 K and $\sim$ 0.15 $µ \Omega\cdot$cm at 300 K, which is 1–3 orders of magnitude larger than that of all known room-temperature 2D skyrmion systems. Moreover, room-temperature current-controlled THE is also realized with a low critical current density of $\sim$ $6.2\times10^{5}$ A$\cdot$cm$^{-2}$. First-principles calculations unveil natural oxidation-induced highly enhanced 2D interfacial DMI reasonable for robust giant THE. This work paves the way to room-temperature electrically controlled 2D THE-based practical spintronic devices.
Electron-Correlation-Induced Charge Density Wave in FeGe
Lin Wu, Yating Hu, Dongze Fan, Di Wang, and Xiangang Wan
Chin. Phys. Lett.    2023, 40 (11): 117103 .   DOI: 10.1088/0256-307X/40/11/117103
Abstract   HTML   PDF (5175KB)
As the first magnetic kagome material to exhibit the charge density wave (CDW) order, FeGe has attracted much attention in recent research. Similar to $A$V$_{3}$Sb$_{5}$ ($A$ = K, Cs, Rb), FeGe exhibits the CDW pattern with an in-plane 2$\times$2 structure and the existence of van Hove singularities near the Fermi level. However, sharply different from $A$V$_{3}$Sb$_{5}$ which has phonon instability at $M$ point, all the theoretically calculated phonon frequencies in FeGe remain positive. Based on first-principles calculations, we surprisingly find that the maximum of nesting function is at $K$ point instead of $M$ point. Two Fermi pockets with Fe-$d_{xz}$ and Fe-$d_{x^{2}-y^{2}}$/$d_{xy}$ orbital characters have large contribution to the Fermi nesting, which evolve significantly with $k_{z}$, indicating the highly three-dimensional (3D) feature of FeGe in contrast to $A$V$_{3}$Sb$_{5}$. Considering the effect of local Coulomb interaction, we reveal that the instability at $K$ point is significantly suppressed due to the sublattice interference mechanism. Meanwhile, the wave functions nested by vector $M$ have many ingredients located at the same Fe site, thus the instability at $M$ point is enhanced. This indicates that the electron correlation, rather than electron-phonon interaction, plays a key role in the CDW transition at $M$ point.
Superconductivity above 30 K Achieved in Dense Scandium
Xin He, Changling Zhang, Zhiwen Li, Sijia Zhang, Shaomin Feng, Jianfa Zhao, Ke Lu, Baosen Min, Yi Peng, Xiancheng Wang, Jin Song, Luhong Wang, Saori I. Kawaguchi, Cheng Ji, Bing Li, Haozhe Liu, J. S. Tse, and Changqing Jin
Chin. Phys. Lett.    2023, 40 (10): 107403 .   DOI: 10.1088/0256-307X/40/10/107403
Abstract   HTML   PDF (2709KB)
Superconductivity is one of most intriguing quantum phenomena, and the quest for elemental superconductors with high critical temperature ($T_{\rm c}$) is of great scientific significance due to their relatively simple material composition and the underlying mechanism. Here we report the experimental discovery of densely compressed scandium (Sc) becoming the first elemental superconductor with $T_{\rm c}$ breaking into 30 K range, which is comparable to the $T_{\rm c}$ values of the classic La–Ba–Cu–O or LaFeAsO superconductors. Our results show that $T_{\rm c}^{\rm onset}$ of Sc increases from $\sim$ $3$ K at around 43 GPa to $\sim$ $32$ K at about 283 GPa ($T_{\rm c}^{\rm zero} \sim 31$ K), which is well above liquid neon temperature. Interestingly, measured $T_{\rm c}$ shows no sign of saturation up to the maximum pressure achieved in our experiments, indicating that $T_{\rm c}$ may be even higher upon further compression.
Profiling Electronic and Phononic Band Structures of Semiconductors at Finite Temperatures: Methods and Applications
Xie Zhang, Jun Kang, and Su-Huai Wei
Chin. Phys. Lett.    2024, 41 (2): 026301 .   DOI: 10.1088/0256-307X/41/2/026301
Abstract   HTML   PDF (29301KB)
Semiconductor devices are often operated at elevated temperatures that are well above zero Kelvin, which is the temperature in most first-principles density functional calculations. Computational approaches to computing and understanding the properties of semiconductors at finite temperatures are thus in critical demand. In this review, we discuss the recent progress in computationally assessing the electronic and phononic band structures of semiconductors at finite temperatures. As an emerging semiconductor with particularly strong temperature-induced renormalization of the electronic and phononic band structures, halide perovskites are used as a representative example to demonstrate how computational advances may help to understand the band structures at elevated temperatures. Finally, we briefly illustrate the remaining computational challenges and outlook promising research directions that may help to guide future research in this field.
Spectrum of the Hole Excitation in Spin-Orbit Mott Insulator Na$_{2}$IrO$_{3}$
Wei Wang, Zhao-Yang Dong, Shun-Li Yu, and Jian-Xin Li
Chin. Phys. Lett.    2023, 40 (8): 087101 .   DOI: 10.1088/0256-307X/40/8/087101
Abstract   HTML   PDF (5710KB)
We study the motion of a hole with internal degrees of freedom, introduced to the zigzag magnetic ground state of Na$_{2}$IrO$_{3}$, by using the self-consistent Born approximation. We find that the low-, intermediate-, and high-energy spectra are primarily attributed to the singlet, triplet, and quintet hole contributions, respectively. The spectral functions exhibit distinct features such as the electron-like dispersion of low-energy states near the $\varGamma$ point, the maximum $M$-point intensity of mid-energy states, and the hole-like dispersion of high-energy states. These features are robust and almost insensitive to the exchange model and Hund's coupling, and are in qualitative agreement with the angular-resolved photoemission spectra observed in Na$_{2}$IrO$_{3}$. Our results reveal that the interference between internal degrees of freedom in different sublattices plays an important role in inducing the complex dispersions.
VASP2KP: $k\!\cdot\! p$ Models and Landé $g$-Factors from ab initio Calculations
Sheng Zhang, Haohao Sheng, Zhi-Da Song, Chenhao Liang, Yi Jiang, Song Sun, Quansheng Wu, Hongming Weng, Zhong Fang, Xi Dai, and Zhijun Wang
Chin. Phys. Lett.    2023, 40 (12): 127101 .   DOI: 10.1088/0256-307X/40/12/127101
Abstract   HTML   PDF (3467KB)
The $k\!\cdot\! p$ method is significant in condensed matter physics for the compact and analytical Hamiltonian. In the presence of magnetic field, it is described by the effective Zeeman's coupling Hamiltonian with Landé $g$-factors. Here, we develop an open-source package VASP2KP (including two parts: vasp2mat and mat2kp) to compute $k\!\cdot\! p$ parameters and Landé $g$-factors directly from the wavefunctions provided by the density functional theory (DFT) as implemented in Vienna ab initio Simulation Package (VASP). First, we develop a VASP patch vasp2mat to compute matrix representations of the generalized momentum operator $\hat{\boldsymbol \pi}=\hat{\boldsymbol p}+\frac{1}{2mc^2}[\hat{{\boldsymbol s}}\times\nabla V({\boldsymbol r})]$, spin operator $\hat{\boldsymbol s}$, time reversal operator $\hat{T}$, and crystalline symmetry operators $\hat{R}$ on the DFT wavefunctions. Second, we develop a python code mat2kp to obtain the unitary transformation $U$ that rotates the degenerate DFT basis towards the standard basis, and then automatically compute the $k\!\cdot\! p$ parameters and $g$-factors. The theory and the methodology behind VASP2KP are described in detail. The matrix elements of the operators are derived comprehensively and computed correctly within the projector augmented wave method. We apply this package to some materials, e.g., Bi$_2$Se$_3$, Na$_3$Bi, Te, InAs and 1H-TMD monolayers. The obtained effective model's dispersions are in good agreement with the DFT data around the specific wave vector, and the $g$-factors are consistent with experimental data. The VASP2KP package is available at https://github.com/zjwang11/VASP2KP.
Light-Induced Phonon-Mediated Magnetization in Monolayer MoS$_{2}$
Shengjie Zhang, Yufei Pei, Shiqi Hu, Na Wu, Da-Qiang Chen, Chao Lian, and Sheng Meng
Chin. Phys. Lett.    2023, 40 (7): 077502 .   DOI: 10.1088/0256-307X/40/7/077502
Abstract   HTML   PDF (2212KB)
Light-induced ultrafast spin dynamics in materials is of great importance for developments of spintronics and magnetic storage technology. Recent progresses include ultrafast demagnetization, magnetic switching, and magnetic phase transitions, while the ultrafast generation of magnetism is hardly achieved. Here, a strong light-induced magnetization (up to $0.86\mu_{\scriptscriptstyle{\rm B}}$ per formula unit) is identified in non-magnetic monolayer molybdenum disulfide (MoS$_{2}$). With the state-of-the-art time-dependent density functional theory simulations, we demonstrate that the out-of-plane magnetization can be induced by circularly polarized laser, where chiral phonons play a vital role. The phonons strongly modulate spin-orbital interactions and promote electronic transitions between the two conduction band states, achieving an effective magnetic field $\sim$ $380$ T. Our study provides important insights into the ultrafast magnetization and spin-phonon coupling dynamics, facilitating effective light-controlled valleytronics and magnetism.
Geometric Thermoelectric Pump: Energy Harvesting beyond Seebeck and Pyroelectric Effects
Jie Ren
Chin. Phys. Lett.    2023, 40 (9): 090501 .   DOI: 10.1088/0256-307X/40/9/090501
Abstract   HTML   PDF (1311KB)
Thermal-electric conversion is crucial for smart energy control and harvesting, such as thermal sensing and waste heat recovering. So far, researchers are aware of two main ways of direct thermal-electric conversion, Seebeck and pyroelectric effects, each with different working mechanisms, conditions and limitations. Here, we report the concept of Geometric Thermoelectric Pump (GTEP), as the third way of thermal-electric conversion beyond Seebeck and pyroelectric effects. In contrast to Seebeck effect that requires spatial temperature difference, GTEP converts the time-dependent ambient temperature fluctuation into electricity. Moreover, GTEP does not require polar materials but applies to general conducting systems, and thus is also distinct from pyroelectric effect. We demonstrate that GTEP results from the temperature-fluctuation-induced charge redistribution, which has a deep connection to the topological geometric phase in non-Hermitian dynamics, as a consequence of the fundamental nonequilibrium thermodynamic geometry. The findings advance our understanding of geometric phase induced multiple-physics-coupled pump effect and provide new means of thermal-electric energy harvesting.
All-Orders Evolution of Parton Distributions: Principle, Practice, and Predictions
Pei-Lin Yin, Yin-Zhen Xu, Zhu-Fang Cui, Craig D. Roberts, and José Rodríguez-Quintero
Chin. Phys. Lett.    2023, 40 (9): 091201 .   DOI: 10.1088/0256-307X/40/9/091201
Abstract   HTML   PDF (1758KB)
Parton distribution functions (PDFs) are defining expressions of hadron structure. Exploiting the role of effective charges in quantum chromodynamics, an algebraic scheme is described which, given any hadron's valence parton PDFs at the hadron scale, delivers predictions for all its PDFs (unpolarized and polarized) at any higher scale. The scheme delivers results that are largely independent of both the value of the hadron scale and the pointwise form of the charge; and, inter alia, enables derivation of a model-independent identity that relates the strength of the proton's gluon helicity PDF, $\Delta G_p^\zeta$, to that of the analogous singlet polarized quark PDF and valence quark momentum fraction. Using available data fits and theory predictions, the identity yields $\Delta G_p(\zeta_{_{\scriptstyle \rm C}}=\sqrt{3}\,{\rm GeV})=1.48(10)$. It furthermore entails that the measurable quark helicity contribution to the proton spin is $\tilde a_{0p}^{\zeta_{_{\scriptstyle \rm C}}}=0.32(3)$, thereby reconciling contemporary experiment and theory.
Prediction of Thermal Conductance of Complex Networks with Deep Learning
Changliang Zhu, Xiangying Shen, Guimei Zhu, and Baowen Li
Chin. Phys. Lett.    2023, 40 (12): 124402 .   DOI: 10.1088/0256-307X/40/12/124402
Abstract   HTML   PDF (2362KB)
Predicting thermal conductance of complex networks poses a formidable challenge in the field of materials science and engineering. This challenge arises due to the intricate interplay between the parameters of network structure and thermal conductance, encompassing connectivity, network topology, network geometry, node inhomogeneity, and others. Our understanding of how these parameters specifically influence heat transfer performance remains limited. Deep learning offers a promising approach for addressing such complex problems. We find that the well-established convolutional neural network models AlexNet can predict the thermal conductance of complex network efficiently. Our approach further optimizes the calculation efficiency by reducing the image recognition in consideration that the thermal transfer is inherently encoded within the Laplacian matrix. Intriguingly, our findings reveal that adopting a simpler convolutional neural network architecture can achieve a comparable prediction accuracy while requiring less computational time. This result facilitates a more efficient solution for predicting the thermal conductance of complex networks and serves as a reference for machine learning algorithm in related domains.
Effective Bi-Layer Model Hamiltonian and Density-Matrix Renormalization Group Study for the High-$T_{\rm c}$ Superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ under High Pressure
Yang Shen, Mingpu Qin, and Guang-Ming Zhang
Chin. Phys. Lett.    2023, 40 (12): 127401 .   DOI: 10.1088/0256-307X/40/12/127401
Abstract   HTML   PDF (3246KB)
High-$T_{\rm c}$ superconductivity with possible $T_{\rm c}\approx 80$ K has been reported in the single crystal of ${\rm La}_{3}{\rm Ni}_{2}{\rm O}_{7}$ under high pressure. Based on the electronic structure given by the density functional theory calculations, we propose an effective bi-layer model Hamiltonian including both $3d_{z^{2}}$ and $3d_{x^{2}-y^{2}}$ orbital electrons of the nickel cations. The main feature of the model is that the $3d_{z^{2}}$ electrons form inter-layer $\sigma$-bonding and anti-bonding bands via the apical oxygen anions between the two layers, while the $3d_{x^{2}-y^{2}}$ electrons hybridize with the $3d_{z^{2}}$ electrons within each NiO$_2$ plane. The chemical potential difference of these two orbital electrons ensures that the $3d_{z^{2}}$ orbitals are close to half-filling and the $3d_{x^{2}-y^{2}}$ orbitals are near quarter-filling. The strong on-site Hubbard repulsion of the $3d_{z^{2}}$ orbital electrons gives rise to an effective inter-layer antiferromagnetic spin super-exchange $J$. Applying pressure can self dope holes on the $3d_{z^{2}}$ orbitals with the same amount of electrons doped on the $3d_{x^{2}-y^{2}}$ orbitals. By performing numerical density-matrix renormalization group calculations on a minimum setup and focusing on the limit of large $J$ and small doping of $3d_{z^{2}}$ orbitals, we find the superconducting instability on both the $3d_{z^{2}}$ and $3d_{x^{2}-y^{2}}$ orbitals by calculating the equal-time spin singlet pair–pair correlation function. Our numerical results may provide useful insights in the high-$T_{\rm c}$ superconductivity in single crystal La$_3$Ni$_2$O$_7$ under high pressure.
Escaping Detrimental Interactions with Microwave-Dressed Transmon Qubits
Z. T. Wang, Peng Zhao, Z. H. Yang, Ye Tian, H. F. Yu, and S. P. Zhao
Chin. Phys. Lett.    2023, 40 (7): 070304 .   DOI: 10.1088/0256-307X/40/7/070304
Abstract   HTML   PDF (2319KB)
Superconducting transmon qubits with fixed frequencies are widely used in many applications due to their advantages of better coherence and less control lines compared to the frequency tunable qubits. However, any uncontrolled interactions with the qubits such as the two-level systems could lead to adverse impacts, degrading the qubit coherence and inducing crosstalk. To mitigate the detrimental effect from uncontrolled interactions between qubits and defect modes in fixed-frequency transmon qubits, we propose and demonstrate an active approach using an off-resonance microwave drive to dress the qubit and to induce the ac-Stark shift on the qubit frequency. We show experimentally that the qubit frequency can be tuned well away from the defect mode so that the impact on qubit coherence is greatly reduced while maintaining the universal controls of the qubit initialization, readout, and single-qubit gate operations. Our approach provides an effective way for tuning the qubit frequency and suppressing the detrimental effect from the defect modes that happen to be located close to the qubit frequency.
Realization of $^{87}$Rb Bose–Einstein Condensates in Higher Bands of a Hexagonal Boron-Nitride Optical Lattice
Jin-Yu Liu, Xiao-Qiong Wang, and Zhi-Fang Xu
Chin. Phys. Lett.    2023, 40 (8): 086701 .   DOI: 10.1088/0256-307X/40/8/086701
Abstract   HTML   PDF (5762KB)
Ultracold neutral atoms in higher bands of an optical lattice provide a natural avenue to emulate orbital physics in solid state materials. Here, we report the realization of $^{87}$Rb Bose–Einstein condensates in the fourth and seventh Bloch bands of a hexagonal boron-nitride optical lattice, exhibiting remarkably long coherence time through active cooling. Using band mapping spectroscopy, we observe that atoms condensed at the energy minimum of $\varGamma$ point ($K_{1}$ and $K_{2}$ points) in the fourth (seventh) band as sharp Bragg peaks. The lifetime for the condensate in the fourth (seventh) band is about 57.6 (4.8) ms, and the phase coherence of atoms in the fourth band persists for a long time larger than 110 ms. Our work thus offers great promise for studying unconventional bosonic superfluidity of neutral atoms in higher bands of optical lattices.
Resonant Charge Transport Assisted by the Molecular Vibration in Single-Molecule Junction from Time-Domain ab initio Nonadiabatic Molecular Dynamics Simulations
Yunzhe Tian, Qijing Zheng, and Jin Zhao
Chin. Phys. Lett.    2023, 40 (12): 126301 .   DOI: 10.1088/0256-307X/40/12/126301
Abstract   HTML   PDF (3575KB)
Using ab initio nonadiabatic molecular dynamics simulation, we study the time-dependent charge transport dynamics in a single-molecule junction formed by gold (Au) electrodes and a single benzene-1,4-dithiol (BDT) molecule. Two different types of charge transport channels are found in the simulation. One is the routine non-resonant charge transfer path, which occurs in several picoseconds. The other is activated when the electronic state of the electrodes and that of the molecule get close in energy, which is referred to as the resonant charge transport. More strikingly, the resonant charge transfer occurs in an ultrafast manner within 100 fs, which notably increases the conductance of the device. Further analysis shows that the resonant charge transport is directly assisted by the $B_{2}$ and $A_{1}$ molecular vibration modes. Our study provides atomic insights into the time-dependent charge transport dynamics in single-molecule junctions, which is important for designing highly efficient single-molecule devices.