Content of GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS in our journal
    Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Neutrino Emission and Cooling of Dark-Matter-Admixed Neutron Stars
Wen-Bo Ding, Zi Yu, Yan Xu, Chun-Jian Liu, Tmurbagan Bao
Chin. Phys. Lett.    2019, 36 (4): 049701 .   DOI: 10.1088/0256-307X/36/4/049701
Abstract   HTML   PDF (632KB)
The GW170817 binary neutron star merger event in 2017 has raised great interest in the theoretical research f neutron stars. The structure and cooling properties of dark-matter-admixed neutron stars are studied here using relativistic mean field theory and cooling theories. The non-self-annihilating dark matter (DM) component is assumed to be ideal fermions, among which the weak interaction is considered. The results show that pulsars J1614-2230, J0348+0432 and EXO 0748-676 may all contain DM with the particle mass of 0.2–0.4 GeV. However, it is found that the effect of DM on neutron star cooling is complicated. Light DM particles favor the fast cooling of neutron stars, and the case is converse for middle massive DM. However, high massive DM particles, around 1.0 GeV, make the low mass (around solar mass) neutron star still undergo direct Urca process of nucleons at the core, which leads the DM-admixed stars cool much more quickly than the normal neutron star, and cannot support the direct Urca process with a mass lower than 1.1 times solar mass. Thus, we may conjecture that if small (around solar mass) and super cold (at least surface temperature 5–10 times lower than that of the usual observed data) pulsars are observed, then the star may contain fermionic DM with weak self-interaction.
Comparison of Proton Shower Developments in the BGO Calorimeter of the Dark Matter Particle Explorer between GEANT4 and FLUKA Simulations
Wei Jiang, Chuan Yue, Ming-Yang Cui, Xiang Li, Qiang Yuan, Francesca Alemanno, Paolo Bernardini, Giovanni Catanzani, Zhan-Fang Chen, Ivan De Mitri, Tie-Kuang Dong, Giacinto Donvito, David Francois Droz, Piergiorgio Fusco, Fabio Gargano, Dong-Ya Guo, Dimitrios Kyratzis, Shi-Jun Lei, Yang Liu, Francesco Loparco, Peng-Xiong Ma, Giovanni Marsella, Mario Nicola Mazziotta, Xu Pan, Wen-Xi Peng, Antonio Surdo, Andrii Tykhonov, Yi-Yeng Wei, Yu-Hong Yu, Jing-Jing Zang, Ya-Peng Zhang, Yong-Jie Zhang, and Yun-Long Zhang
Chin. Phys. Lett.    2020, 37 (11): 119601 .   DOI: 10.1088/0256-307X/37/11/119601
Abstract   HTML   PDF (1020KB)
The DArk Matter Particle Explorer (DAMPE) is a satellite-borne detector for high-energy cosmic rays and $\gamma$-rays. To fully understand the detector performance and obtain reliable physical results, extensive simulations of the detector are necessary. The simulations are particularly important for the data analysis of cosmic ray nuclei, which relies closely on the hadronic and nuclear interactions of particles in the detector material. Widely adopted simulation softwares include the GEANT4 and FLUKA, both of which have been implemented for the DAMPE simulation tool. Here we describe the simulation tool of DAMPE and compare the results of proton shower properties in the calorimeter from the two simulation softwares. Such a comparison gives an estimate of the most significant uncertainties of our proton spectral analysis.
  First page | Prev page | Next page | Last page Page 1 of 1, 2 records