Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Digital Simulation of Projective Non-Abelian Anyons with 68 Superconducting Qubits
Shibo Xu, Zheng-Zhi Sun, Ke Wang, Liang Xiang, Zehang Bao, Zitian Zhu, Fanhao Shen, Zixuan Song, Pengfei Zhang, Wenhui Ren, Xu Zhang, Hang Dong, Jinfeng Deng, Jiachen Chen, Yaozu Wu, Ziqi Tan, Yu Gao, Feitong Jin, Xuhao Zhu, Chuanyu Zhang, Ning Wang, Yiren Zou, Jiarun Zhong, Aosai Zhang, Weikang Li, Wenjie Jiang, Li-Wei Yu, Yunyan Yao, Zhen Wang, Hekang Li, Qiujiang Guo, Chao Song, H. Wang, and Dong-Ling Deng
Chin. Phys. Lett.    2023, 40 (6): 060301 .   DOI: 10.1088/0256-307X/40/6/060301
Abstract   HTML   PDF (14075KB)
Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter. They break the fermion-boson dichotomy and obey non-Abelian braiding statistics: their interchanges yield unitary operations, rather than merely a phase factor, in a space spanned by topologically degenerate wavefunctions. They are the building blocks of topological quantum computing. However, experimental observation of non-Abelian anyons and their characterizing braiding statistics is notoriously challenging and has remained elusive hitherto, in spite of various theoretical proposals. Here, we report an experimental quantum digital simulation of projective non-Abelian anyons and their braiding statistics with up to 68 programmable superconducting qubits arranged on a two-dimensional lattice. By implementing the ground states of the toric-code model with twists through quantum circuits, we demonstrate that twists exchange electric and magnetic charges and behave as a particular type of non-Abelian anyons, i.e., the Ising anyons. In particular, we show experimentally that these twists follow the fusion rules and non-Abelian braiding statistics of the Ising type, and can be explored to encode topological logical qubits. Furthermore, we demonstrate how to implement both single- and two-qubit logic gates through applying a sequence of elementary Pauli gates on the underlying physical qubits. Our results demonstrate a versatile quantum digital approach for simulating non-Abelian anyons, offering a new lens into the study of such peculiar quasiparticles.
Lithium Ion Batteries Operated at $-100\,^{\circ}\!$C
Jianli Gai, Jirong Yang, Wei Yang, Quan Li, Xiaodong Wu, and Hong Li
Chin. Phys. Lett.    2023, 40 (8): 086101 .   DOI: 10.1088/0256-307X/40/8/086101
Abstract   HTML   PDF (1729KB)
Enabling lithium-ion batteries (LIBs) to operate in a wider temperature range, e.g., as low or high as possible or capable of both, is an urgent need and shared goal. Here we report, for the first time, a low-temperature electrolyte consisting of traditional ethylene carbonate, methyl acetate, butyronitrile solvents, and 1 M LiPF$_{6}$ salt, attributed to its very low freezing point ($T_{\rm f} = -126.3\,^{\circ}\!$C) and high ion conductivity at extremely low temperatures (0.21 mS/cm at $-100\,^{\circ}\!$C), successfully extends the service temperature of a practical 9.6 Ah LIB down to $-100\,^{\circ}\!$C (49.6% capacity retention compared to that at room temperature), which is the lowest temperature reported for practical cells so far as we know, and is lower than the lowest natural temperature ($-89.2\,^{\circ}\!$C) recorded on earth. Meanwhile, the high-temperature performance of lithium-ion batteries is not affected. The capacity retention is 88.2% and 83.4% after 800 cycles at 25$\,^{\circ}\!$C and 45$\,^{\circ}\!$C, respectively. The progress also makes LIB a proper power supplier for space vehicles in astronautic explorations.
Dark Korteweg–De Vrise System and Its Higher-Dimensional Deformations
Si-Yu Zhu, De-Xing Kong, and Sen-Yue Lou
Chin. Phys. Lett.    2023, 40 (8): 080201 .   DOI: 10.1088/0256-307X/40/8/080201
Abstract   HTML   PDF (357KB)
The new dimensional deformation approach is proposed to generate higher-dimensional analogues of integrable systems. An arbitrary ($K$+1)-dimensional integrable Korteweg–de Vries (KdV) system, as an example, exhibiting symmetry, is illustrated to arise from a reconstructed deformation procedure, starting with a general symmetry integrable (1+1)-dimensional dark KdV system and its conservation laws. Physically, the dark equation systems may be related to dark matter physics. To describe nonlinear physics, both linear and nonlinear dispersions should be considered. In the original lower-dimensional integrable systems, only liner or nonlinear dispersion is included. The deformation algorithm naturally makes the model also include the linear dispersion and nonlinear dispersion.
Ultrafast Condensed Matter Physics at Attoseconds
Shi-Qi Hu and Sheng Meng
Chin. Phys. Lett.    2023, 40 (11): 117801 .   DOI: 10.1088/0256-307X/40/11/117801
Abstract   HTML   PDF (22337KB)
Our understanding of how photons couple to different degrees of freedom in solids forms the bedrock of ultrafast physics and materials sciences. In this review, the emergent ultrafast dynamics in condensed matter at the attosecond timescale have been intensively discussed. In particular, the focus is put on recent developments of attosecond dynamics of charge, exciton, and magnetism. New concepts and indispensable role of interactions among multiple degrees of freedom in solids are highlighted. Applications of attosecond electronic metrology and future prospects toward attosecond dynamics in condensed matter are further discussed. These pioneering studies promise future development of advanced attosecond science and technology such as attosecond lasers, laser medical engineering, and ultrafast electronic devices.
Chiral Dirac Fermion in a Collinear Antiferromagnet
Ao Zhang, Ke Deng, Jieming Sheng, Pengfei Liu, Shiv Kumar, Kenya Shimada, Zhicheng Jiang, Zhengtai Liu, Dawei Shen, Jiayu Li, Jun Ren, Le Wang, Liang Zhou, Yoshihisa Ishikawa, Takashi Ohhara, Qiang Zhang, Garry McIntyre, Dehong Yu, Enke Liu, Liusuo Wu, Chaoyu Chen, and Qihang Liu
Chin. Phys. Lett.    2023, 40 (12): 126101 .   DOI: 10.1088/0256-307X/40/12/126101
Abstract   HTML   PDF (21962KB)
In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral “Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden $SU(2)$ symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb$_{3}$S$_{6}$. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions. Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb$_{3}$S$_{6}$, paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.
A High-Randomness and High-Stability Electronic Quantum Random Number Generator without Post Processing
Yu-Xuan Liu, Ke-Xin Huang, Yu-Ming Bai, Zhe Yang, and Jun-Lin Li
Chin. Phys. Lett.    2023, 40 (7): 070303 .   DOI: 10.1088/0256-307X/40/7/070303
Abstract   HTML   PDF (1021KB)
Random numbers are one of the key foundations of cryptography. This work implements a discrete quantum random number generator (QRNG) based on the tunneling effect of electrons in an avalanche photo diode. Without any post-processing and conditioning, this QRNG can output raw sequences at a rate of 100 Mbps. Remarkably, the statistical min-entropy of the 8,000,000 bits sequence reaches 0.9944 bits/bit, and the min-entropy validated by NIST SP 800-90B reaches 0.9872 bits/bit. This metric is currently the highest value we have investigated for QRNG raw sequences. Moreover, this QRNG can continuously and stably output raw sequences with high randomness over extended periods. The system produced a continuous output of 1,174 Gbits raw sequence for a duration of 11,744 s, with every 8 Mbits forming a unit to obtain a statistical min-entropy distribution with an average value of 0.9892 bits/bit. The statistical min-entropy of all data (1,174 Gbits) achieves the value of 0.9951 bits/bit. This QRNG can produce high-quality raw sequences with good randomness and stability. It has the potential to meet the high demand in cryptography for random numbers with high quality.
Light-Induced Phonon-Mediated Magnetization in Monolayer MoS$_{2}$
Shengjie Zhang, Yufei Pei, Shiqi Hu, Na Wu, Da-Qiang Chen, Chao Lian, and Sheng Meng
Chin. Phys. Lett.    2023, 40 (7): 077502 .   DOI: 10.1088/0256-307X/40/7/077502
Abstract   HTML   PDF (2212KB)
Light-induced ultrafast spin dynamics in materials is of great importance for developments of spintronics and magnetic storage technology. Recent progresses include ultrafast demagnetization, magnetic switching, and magnetic phase transitions, while the ultrafast generation of magnetism is hardly achieved. Here, a strong light-induced magnetization (up to $0.86\mu_{\scriptscriptstyle{\rm B}}$ per formula unit) is identified in non-magnetic monolayer molybdenum disulfide (MoS$_{2}$). With the state-of-the-art time-dependent density functional theory simulations, we demonstrate that the out-of-plane magnetization can be induced by circularly polarized laser, where chiral phonons play a vital role. The phonons strongly modulate spin-orbital interactions and promote electronic transitions between the two conduction band states, achieving an effective magnetic field $\sim$ $380$ T. Our study provides important insights into the ultrafast magnetization and spin-phonon coupling dynamics, facilitating effective light-controlled valleytronics and magnetism.
Magnetic-Field-Induced Sign Changes of Thermal Expansion in DyCrO$_{4}$
Jin-Cheng He, Zhao Pan, Dan Su, Xu-Dong Shen, Jie Zhang, Da-Biao Lu, Hao-Ting Zhao, Jun-Zhuang Cong, En-Ke Liu, You-Wen Long, and Young Sun
Chin. Phys. Lett.    2023, 40 (6): 066501 .   DOI: 10.1088/0256-307X/40/6/066501
Abstract   HTML   PDF (7667KB)
The anharmonicity of lattice vibration is mainly responsible for the coefficient of thermal expansion (CTE) of materials. External stimuli, such as magnetic and electric fields, thus cannot effectively change the CTE, much less the sign variation from positive to negative or vice versa. In this study, we report significant magnetic field effects on the CTE of zircon- and scheelite-type DyCrO$_{4}$ prepared at ambient and high pressures, respectively. At zero field, the zircon-type DyCrO$_{4}$ exhibits a negative CTE below the ferromagnetic-order temperature of 23 K. With increasing field up to $\ge $1.0 T, however, the sign of the CTE changes from negative to positive. In the scheelite phase, magnetic field can change the initially positive CTE to be negative with a field up to 2.0 T, and then a reentrant positive CTE is induced by enhanced fields $\ge $3.5 T. Both zircon and scheelite phases exhibit considerable magnetostrictive effects with the absolute values as high as $\sim$ $800$ ppm at 2 K and 10 T. The strong spin–lattice coupling is discussed to understand the unprecedented sign changes of the CTE caused by applying magnetic fields. The current DyCrO$_{4}$ provides the first example of field-induced sign change of thermal expansion, opening up a way to readily control the thermal expansion beyond the conventional chemical substitution.
Hydrothermally Obtaining Superconductor Single Crystal of FeSe$_{0.2}$Te$_{0.8}$ without Interstitial Fe
Sheng Ma, Shanshan Yan, Jiali Liu, Yizhe Wang, Yuhang Zhang, Zhen Zhao, Zouyouwei Lu, Dong Li, Yue Liu, Jihu Lu, Hua Zhang, Haitao Yang, Fang Zhou, Zian, Li, Xiaoli Dong, and Zhongxian Zhao
Chin. Phys. Lett.    2023, 40 (6): 067402 .   DOI: 10.1088/0256-307X/40/6/067402
Abstract   HTML   PDF (3525KB)
We report a hydrothermal route to remove interstitial excess Fe in non-superconducting iron chalcogenide Fe$_{1+\delta}$Se$_{1-x}$Te$_{x}$ single crystals. The extra-Fe-free ($\delta \sim 0$) FeSe$_{0.2}$Te$_{0.8}$ single crystal thus obtained shows bulk superconductivity at $T_{\rm c} \sim 13.8$ K, which is about 2 K higher than the FeSe$_{0.2}$Te$_{0.8}$ sample obtained by usual post-annealing process. The upper critical field $\mu_{0}H_{\rm c2}$ is estimated to be $\sim$ $42.5$ T, similar to the annealed FeSe$_{0.2}$Te$_{0.8}$. It is surprising to find that the hydrothermal FeSe$_{0.2}$Te$_{0.8}$ exhibits a remarkably small isothermal magnetization hysteresis loop at $T = 3$ K. This yields an extremely low critical current density $J_{\rm c} \sim 1.1\times 10^{2}$ A$\cdot$cm$^{-2}$ (over 100 times smaller than the annealed FeSe$_{0.2}$Te$_{0.8}$) and indicates more free vortices in the hydrothermal FeSe$_{0.2}$Te$_{0.8}$.
Engineering Interlayer Hybridization in Energy Space via Dipolar Overlayers
Bin Shao, Xiao Jiang, Jan Berges, Sheng Meng, and Bing Huang
Chin. Phys. Lett.    2023, 40 (8): 087303 .   DOI: 10.1088/0256-307X/40/8/087303
Abstract   HTML   PDF (6860KB)
The interlayer hybridization (IH) of van der Waals (vdW) materials is thought to be mostly associated with the unignorable interlayer overlaps of wavefunctions ($t$) in real space. Here, we develop a more fundamental understanding of IH by introducing a new physical quantity, the IH admixture ratio $\alpha$. Consequently, an exotic strategy of IH engineering in energy space can be proposed, i.e., instead of changing $t$ as commonly used, $\alpha$ can be effectively tuned in energy space by changing the on-site energy difference (${2\varDelta}$) between neighboring-layer states. In practice, this is feasible via reshaping the electrostatic potential of the surface by deposing a dipolar overlayer, e.g., crystalline ice. Our first-principles calculations unveil that IH engineering via adjusting ${2\varDelta}$ can greatly tune interlayer optical transitions in transition-metal dichalcogenide bilayers, switch different types of Dirac surface states in Bi$_{2}$Se$_{3}$ thin films, and control magnetic phase transition of charge density waves in 1H/1T-TaS$_{2}$ bilayers, opening new opportunities to govern the fundamental optoelectronic, topological, and magnetic properties of vdW systems beyond the traditional interlayer distance or twisting engineering.
High-Temperature Superconductivity in La$_3$Ni$_2$O$_7$
Kun Jiang, Ziqiang Wang, and Fu-Chun Zhang
Chin. Phys. Lett.    2024, 41 (1): 017402 .   DOI: 10.1088/0256-307X/41/1/017402
Abstract   HTML   PDF (1250KB)
Motivated by the recent discovery of high-temperature superconductivity in bilayer La$_3$Ni$_2$O$_7$ under pressure, we study its electronic properties and superconductivity due to strong electron correlation. Using the inversion symmetry, we decouple the low-energy electronic structure into block-diagonal symmetric and antisymmetric sectors. It is found that the antisymmetric sector can be reduced to a one-band system near half filling, while the symmetric bands occupied by about two electrons are heavily overdoped individually. Using the strong coupling mean field theory, we obtain strong superconducting pairing with $B_{\rm 1g}$ symmetry in the antisymmetric sector. We propose that due to the spin-orbital exchange coupling between the two sectors, $B_{\rm 1g}$ pairing is induced in the symmetric bands, which in turn boosts the pairing gap in the antisymmetric band and enhances the high-temperature superconductivity with a congruent d-wave symmetry in pressurized La$_3$Ni$_2$O$_7$.
Superconductivity above 30 K Achieved in Dense Scandium
Xin He, Changling Zhang, Zhiwen Li, Sijia Zhang, Shaomin Feng, Jianfa Zhao, Ke Lu, Baosen Min, Yi Peng, Xiancheng Wang, Jin Song, Luhong Wang, Saori I. Kawaguchi, Cheng Ji, Bing Li, Haozhe Liu, J. S. Tse, and Changqing Jin
Chin. Phys. Lett.    2023, 40 (10): 107403 .   DOI: 10.1088/0256-307X/40/10/107403
Abstract   HTML   PDF (2709KB)
Superconductivity is one of most intriguing quantum phenomena, and the quest for elemental superconductors with high critical temperature ($T_{\rm c}$) is of great scientific significance due to their relatively simple material composition and the underlying mechanism. Here we report the experimental discovery of densely compressed scandium (Sc) becoming the first elemental superconductor with $T_{\rm c}$ breaking into 30 K range, which is comparable to the $T_{\rm c}$ values of the classic La–Ba–Cu–O or LaFeAsO superconductors. Our results show that $T_{\rm c}^{\rm onset}$ of Sc increases from $\sim$ $3$ K at around 43 GPa to $\sim$ $32$ K at about 283 GPa ($T_{\rm c}^{\rm zero} \sim 31$ K), which is well above liquid neon temperature. Interestingly, measured $T_{\rm c}$ shows no sign of saturation up to the maximum pressure achieved in our experiments, indicating that $T_{\rm c}$ may be even higher upon further compression.
High-Temperature Superconductivity in Doped Boron Clathrates
Liang Ma, Lingrui Wang, Yifang Yuan, Haizhong Guo, and Hongbo Wang
Chin. Phys. Lett.    2023, 40 (8): 086201 .   DOI: 10.1088/0256-307X/40/8/086201
Abstract   HTML   PDF (5126KB)
The recent discoveries of near-room-temperature superconductivity in clathrate hydrides present compelling evidence for the reliability of theory-orientated conventional superconductivity. Nevertheless, the harsh pressure conditions required to maintain such high $T_{\rm c}$ limit their practical applications. To address this challenge, we conducted extensive first-principles calculations to investigate the doping effect of the recently synthesized LaB$_{8}$ clathrate, intending to design high-temperature superconductors at ambient pressure. Our results demonstrate that these clathrates are highly promising for high-temperature superconductivity owing to the coexistence of rigid boron covalent networks and the tunable density of states at the Fermi level. Remarkably, the predicted $T_{\rm c}$ of BaB$_{8}$ could reach 62 K at ambient pressure, suggesting a significant improvement over the calculated $T_{\rm c}$ of 14 K in LaB$_{8}$. Moreover, further calculations of the formation enthalpies suggest that BaB$_{8}$ could be potentially synthesized under high-temperature and high-pressure conditions. These findings highlight the potential of doped boron clathrates as promising superconductors and provide valuable insights into the design of light-element clathrate superconductors.
Geometric Thermoelectric Pump: Energy Harvesting beyond Seebeck and Pyroelectric Effects
Jie Ren
Chin. Phys. Lett.    2023, 40 (9): 090501 .   DOI: 10.1088/0256-307X/40/9/090501
Abstract   HTML   PDF (1311KB)
Thermal-electric conversion is crucial for smart energy control and harvesting, such as thermal sensing and waste heat recovering. So far, researchers are aware of two main ways of direct thermal-electric conversion, Seebeck and pyroelectric effects, each with different working mechanisms, conditions and limitations. Here, we report the concept of Geometric Thermoelectric Pump (GTEP), as the third way of thermal-electric conversion beyond Seebeck and pyroelectric effects. In contrast to Seebeck effect that requires spatial temperature difference, GTEP converts the time-dependent ambient temperature fluctuation into electricity. Moreover, GTEP does not require polar materials but applies to general conducting systems, and thus is also distinct from pyroelectric effect. We demonstrate that GTEP results from the temperature-fluctuation-induced charge redistribution, which has a deep connection to the topological geometric phase in non-Hermitian dynamics, as a consequence of the fundamental nonequilibrium thermodynamic geometry. The findings advance our understanding of geometric phase induced multiple-physics-coupled pump effect and provide new means of thermal-electric energy harvesting.
Hydrodynamics of a Multi-Component Bosonic Superfluid
Fan Zhang and Lan Yin
Chin. Phys. Lett.    2023, 40 (6): 066701 .   DOI: 10.1088/0256-307X/40/6/066701
Abstract   HTML   PDF (407KB)
We obtain the superfluid hydrodynamic equations of a multi-component Bose gas with short-ranged interactions at zero temperature under the local equilibrium assumption and show that the quantum pressure is generally present in the nonuniform case. Our approach can be extended to systems with long-range interactions such as dipole-dipole interactions by treating the Hartree energy properly. For a highly symmetric superfluid, we obtain the excitation spectrum and show that except for the density phonon, all other excitations are all degenerate. The implication of our results is discussed.
Realizations, Characterizations, and Manipulations of Two-Dimensional Electron Systems Floating above Superfluid Helium Surfaces
Haoran Wei, Mengmeng Wu, Renfei Wang, Mingcheng He, Hiroki Ikegami, Yang Liu, and Zhi Gang Cheng
Chin. Phys. Lett.    2023, 40 (12): 127301 .   DOI: 10.1088/0256-307X/40/12/127301
Abstract   HTML   PDF (4147KB)
Electron systems in low dimensions are enriched with many superior properties for both fundamental research and technical developments. Wide tunability of electron density, high mobility of motion, and feasible controllability in microscales are the most prominent advantages that researchers strive for. Nevertheless, it is always difficult to fulfill all in one solid-state system. Two-dimensional electron systems (2DESs) floating above the superfluid helium surfaces are thought to meet these three requirements simultaneously, ensured by the atomic smoothness of surfaces and the electric neutrality of helium. Here we report our recent work in preparing, characterizing, and manipulating 2DESs on superfluid helium. We realized a tunability of electron density over one order of magnitude and tuned their transport properties by varying electron distribution and measurement frequency. The work we engage in is crucial for advancing research in many-body physics and for development of single-electron quantum devices rooted in these electron systems.
Electron-Correlation-Induced Charge Density Wave in FeGe
Lin Wu, Yating Hu, Dongze Fan, Di Wang, and Xiangang Wan
Chin. Phys. Lett.    2023, 40 (11): 117103 .   DOI: 10.1088/0256-307X/40/11/117103
Abstract   HTML   PDF (5175KB)
As the first magnetic kagome material to exhibit the charge density wave (CDW) order, FeGe has attracted much attention in recent research. Similar to $A$V$_{3}$Sb$_{5}$ ($A$ = K, Cs, Rb), FeGe exhibits the CDW pattern with an in-plane 2$\times$2 structure and the existence of van Hove singularities near the Fermi level. However, sharply different from $A$V$_{3}$Sb$_{5}$ which has phonon instability at $M$ point, all the theoretically calculated phonon frequencies in FeGe remain positive. Based on first-principles calculations, we surprisingly find that the maximum of nesting function is at $K$ point instead of $M$ point. Two Fermi pockets with Fe-$d_{xz}$ and Fe-$d_{x^{2}-y^{2}}$/$d_{xy}$ orbital characters have large contribution to the Fermi nesting, which evolve significantly with $k_{z}$, indicating the highly three-dimensional (3D) feature of FeGe in contrast to $A$V$_{3}$Sb$_{5}$. Considering the effect of local Coulomb interaction, we reveal that the instability at $K$ point is significantly suppressed due to the sublattice interference mechanism. Meanwhile, the wave functions nested by vector $M$ have many ingredients located at the same Fe site, thus the instability at $M$ point is enhanced. This indicates that the electron correlation, rather than electron-phonon interaction, plays a key role in the CDW transition at $M$ point.
Stark Tuning of Telecom Single-Photon Emitters Based on a Single Er$^{3+}$
Jian-Yin Huang, Peng-Jun Liang, Liang Zheng, Pei-Yun Li, You-Zhi Ma, Duan-Chen Liu, Jing-Hui Xie, Zong-Quan Zhou, Chuan-Feng Li, and Guang-Can Guo
Chin. Phys. Lett.    2023, 40 (7): 070301 .   DOI: 10.1088/0256-307X/40/7/070301
Abstract   HTML   PDF (2427KB)
The implementation of scalable quantum networks requires photons at the telecom band and long-lived spin coherence. The single Er$^{3+}$ in solid-state hosts is an important candidate that fulfills these critical requirements simultaneously. However, to entangle distant Er$^{3+}$ ions through photonic connections, the emission frequency of individual Er$^{3+}$ in solid-state matrix must be the same, which is challenging because the emission frequency of Er$^{3+}$ depends on its local environment. Herein, we propose and experimentally demonstrate the Stark tuning of the emission frequency of a single Er$^{3+}$ in a Y$_2$SiO$_5$ crystal by employing electrodes interfaced with a silicon photonic crystal cavity. We obtain a Stark shift of 182.9$\pm 0.8$ MHz, which is approximately 27 times of the optical emission linewidth, demonstrating promising applications in tuning the emission frequency of independent Er$^{3+}$ into the same spectral channels. Our results provide a useful solution for construction of scalable quantum networks based on single Er$^{3+}$ and a universal tool for tuning emission of individual rare-earth ions.
Moiré Synaptic Transistor for Homogeneous-Architecture Reservoir Computing
Pengfei Wang, Moyu Chen, Yongqin Xie, Chen Pan, Kenji Watanabe, Takashi Taniguchi, Bin Cheng, Shi-Jun Liang, and Feng Miao
Chin. Phys. Lett.    2023, 40 (11): 117201 .   DOI: 10.1088/0256-307X/40/11/117201
Abstract   HTML   PDF (8946KB)
Reservoir computing has been considered as a promising intelligent computing paradigm for effectively processing complex temporal information. Exploiting tunable and reproducible dynamics in the single electronic device have been desired to implement the “reservoir” and the “readout” layer of reservoir computing system. Two-dimensional moiré materials, with an artificial lattice constant many times larger than the atomic length scale, are one type of most studied artificial quantum materials in community of material science and condensed-matter physics over the past years. These materials are featured with gate-tunable periodic potential and electronic correlation, thus varying the electric field allows the electrons in the moiré potential per unit cell to exhibit distinct and reproducible dynamics, showing great promise in robust reservoir computing. Here, we report that a moiré synaptic transistor can be used to implement the reservoir computing system with a homogeneous reservoir-readout architecture. The synaptic transistor is fabricated based on an h-BN/bilayer graphene/h-BN moiré heterostructure, exhibiting ferroelectricity-like hysteretic gate voltage dependence of resistance. Varying the magnitude of the gate voltage enables the moiré transistor to switch between long-term memory and short-term memory with nonlinear dynamics. By employing the short- and long-term memories as the reservoir nodes and weights of the readout layer, respectively, we construct a full-moiré physical neural network and demonstrate that the classification accuracy of 90.8% can be achieved for the MNIST (Modified National Institute of Standards and Technology) handwritten digits database. Our work would pave the way towards the development of neuromorphic computing based on moiré materials.
Realization of $^{87}$Rb Bose–Einstein Condensates in Higher Bands of a Hexagonal Boron-Nitride Optical Lattice
Jin-Yu Liu, Xiao-Qiong Wang, and Zhi-Fang Xu
Chin. Phys. Lett.    2023, 40 (8): 086701 .   DOI: 10.1088/0256-307X/40/8/086701
Abstract   HTML   PDF (5762KB)
Ultracold neutral atoms in higher bands of an optical lattice provide a natural avenue to emulate orbital physics in solid state materials. Here, we report the realization of $^{87}$Rb Bose–Einstein condensates in the fourth and seventh Bloch bands of a hexagonal boron-nitride optical lattice, exhibiting remarkably long coherence time through active cooling. Using band mapping spectroscopy, we observe that atoms condensed at the energy minimum of $\varGamma$ point ($K_{1}$ and $K_{2}$ points) in the fourth (seventh) band as sharp Bragg peaks. The lifetime for the condensate in the fourth (seventh) band is about 57.6 (4.8) ms, and the phase coherence of atoms in the fourth band persists for a long time larger than 110 ms. Our work thus offers great promise for studying unconventional bosonic superfluidity of neutral atoms in higher bands of optical lattices.
Giant 2D Skyrmion Topological Hall Effect with Ultrawide Temperature Window and Low-Current Manipulation in 2D Room-Temperature Ferromagnetic Crystals
Gaojie Zhang, Qingyuan Luo, Xiaokun Wen, Hao Wu, Li Yang, Wen Jin, Luji Li, Jia Zhang, Wenfeng Zhang, Haibo Shu, and Haixin Chang
Chin. Phys. Lett.    2023, 40 (11): 117501 .   DOI: 10.1088/0256-307X/40/11/117501
Abstract   HTML   PDF (10784KB)
The discovery and manipulation of topological Hall effect (THE), an abnormal magnetoelectric response mostly related to the Dzyaloshinskii–Moriya interaction (DMI), are promising for next-generation spintronic devices based on topological spin textures such as magnetic skyrmions. However, most skyrmions and THE are stabilized in a narrow temperature window either below or over room temperature with high critical current manipulation. It is still elusive and challenging to achieve large THE with both wide temperature window till room temperature and low critical current manipulation. Here, using controllable, naturally oxidized sub-20 and sub-10 nm 2D van der Waals room-temperature ferromagnetic Fe$_{3}$GaTe$_{2-x}$ crystals, we report robust 2D skyrmion THE with ultrawide temperature window ranging in three orders of magnitude from 2 to 300 K, in combination with giant THE of $\sim$ 5.4 $µ \Omega\cdot$cm at 10 K and $\sim$ 0.15 $µ \Omega\cdot$cm at 300 K, which is 1–3 orders of magnitude larger than that of all known room-temperature 2D skyrmion systems. Moreover, room-temperature current-controlled THE is also realized with a low critical current density of $\sim$ $6.2\times10^{5}$ A$\cdot$cm$^{-2}$. First-principles calculations unveil natural oxidation-induced highly enhanced 2D interfacial DMI reasonable for robust giant THE. This work paves the way to room-temperature electrically controlled 2D THE-based practical spintronic devices.
Visualizing the Local Twist Angle Variation within and between Domains of Twisted Bilayer Graphene
Jiawei Hu, Shiyu Zhu, Qianying Hu, Yunhao Wang, Chengmin Shen, Haitao Yang, Xiaoshan Zhu, Qing Huan, Yang Xu, and Hong-Jun Gao
Chin. Phys. Lett.    2024, 41 (3): 037401 .   DOI: 10.1088/0256-307X/41/3/037401
Abstract   HTML   PDF (14572KB)
Moiré superlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena, which are highly sensitive to twist angles, including both the global value and the spatial inhomogeneity. However, only a few methods provide spatial-resolved information for characterizing local twist angle distribution. Here we directly visualize the variations of local twist angles and angle-dependent evolutions of the quantum states in twisted bilayer graphene by scanning microwave impedance microscopy (sMIM). Spatially resolved sMIM measurements reveal a pronounced alteration in the local twist angle, approximately 0.3$^{\circ}$ over several micrometers in some cases. The variation occurs not only when crossing domain boundaries but also occasionally within individual domains. Additionally, the full-filling density of the flat band experiences a change of over $2 \times 10^{11}$ cm$^{-2}$ when crossing domain boundaries, aligning consistently with the twist angle inhomogeneity. Moreover, the correlated Chern insulators undergo variations in accordance with the twist angle, gradually weakening and eventually disappearing as the deviation from the magic angle increases. Our findings signify the crucial role of twist angles in shaping the distribution and existence of quantum states, establishing a foundational cornerstone for advancing the study of twisted two-dimensional materials.
Stochastic Gradient Descent and Anomaly of Variance-Flatness Relation in Artificial Neural Networks
Xia Xiong, Yong-Cong Chen, Chunxiao Shi, and Ping Ao
Chin. Phys. Lett.    2023, 40 (8): 080202 .   DOI: 10.1088/0256-307X/40/8/080202
Abstract   HTML   PDF (1487KB)
Stochastic gradient descent (SGD), a widely used algorithm in deep-learning neural networks, has attracted continuing research interests for the theoretical principles behind its success. A recent work reported an anomaly (inverse) relation between the variance of neural weights and the landscape flatness of the loss function driven under SGD [Feng Y and Tu Y Proc. Natl. Acad. Sci. USA 118 e2015617118 (2021)}]. To investigate this seeming violation of statistical physics principle, the properties of SGD near fixed points are analyzed with a dynamic decomposition method. Our approach recovers the true “energy” function under which the universal Boltzmann distribution holds. It differs from the cost function in general and resolves the paradox raised by the anomaly. The study bridges the gap between the classical statistical mechanics and the emerging discipline of artificial intelligence, with potential for better algorithms to the latter.
Resonant Auger Scattering by Attosecond X-Ray Pulses
Quan-Wei Nan, Chao Wang, Xin-Yue Yu, Xi Zhao, Yongjun Cheng, Maomao Gong, Xiao-Jing Liu, Victor Kimberg, and Song-Bin Zhang
Chin. Phys. Lett.    2023, 40 (9): 093201 .   DOI: 10.1088/0256-307X/40/9/093201
Abstract   HTML   PDF (1256KB)
As x-ray probe pulses approach the subfemtosecond range, conventional x-ray photoelectron spectroscopy (XPS) is expected to experience a reduction in spectral resolution due to the effects of the pulse broadening. However, in the case of resonant x-ray photoemission, also known as resonant Auger scattering (RAS), the spectroscopic technique maintains spectral resolution when an x-ray pulse is precisely tuned to a core-excited state. We present theoretical simulations of XPS and RAS spectra on a showcased CO molecule using ultrashort x-ray pulses, revealing significantly enhanced resolution in the RAS spectra compared to XPS, even in the sub-femtosecond regime. These findings provide a novel perspective on potential utilization of attosecond x-ray pulses, capitalizing on the well-established advantages of detecting electron signals for tracking electronic and molecular dynamics.
Effective Bi-Layer Model Hamiltonian and Density-Matrix Renormalization Group Study for the High-$T_{\rm c}$ Superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ under High Pressure
Yang Shen, Mingpu Qin, and Guang-Ming Zhang
Chin. Phys. Lett.    2023, 40 (12): 127401 .   DOI: 10.1088/0256-307X/40/12/127401
Abstract   HTML   PDF (3246KB)
High-$T_{\rm c}$ superconductivity with possible $T_{\rm c}\approx 80$ K has been reported in the single crystal of ${\rm La}_{3}{\rm Ni}_{2}{\rm O}_{7}$ under high pressure. Based on the electronic structure given by the density functional theory calculations, we propose an effective bi-layer model Hamiltonian including both $3d_{z^{2}}$ and $3d_{x^{2}-y^{2}}$ orbital electrons of the nickel cations. The main feature of the model is that the $3d_{z^{2}}$ electrons form inter-layer $\sigma$-bonding and anti-bonding bands via the apical oxygen anions between the two layers, while the $3d_{x^{2}-y^{2}}$ electrons hybridize with the $3d_{z^{2}}$ electrons within each NiO$_2$ plane. The chemical potential difference of these two orbital electrons ensures that the $3d_{z^{2}}$ orbitals are close to half-filling and the $3d_{x^{2}-y^{2}}$ orbitals are near quarter-filling. The strong on-site Hubbard repulsion of the $3d_{z^{2}}$ orbital electrons gives rise to an effective inter-layer antiferromagnetic spin super-exchange $J$. Applying pressure can self dope holes on the $3d_{z^{2}}$ orbitals with the same amount of electrons doped on the $3d_{x^{2}-y^{2}}$ orbitals. By performing numerical density-matrix renormalization group calculations on a minimum setup and focusing on the limit of large $J$ and small doping of $3d_{z^{2}}$ orbitals, we find the superconducting instability on both the $3d_{z^{2}}$ and $3d_{x^{2}-y^{2}}$ orbitals by calculating the equal-time spin singlet pair–pair correlation function. Our numerical results may provide useful insights in the high-$T_{\rm c}$ superconductivity in single crystal La$_3$Ni$_2$O$_7$ under high pressure.
Enhanced Magnetic Interaction between Ga and Fe in Two-Dimensional van der Waals Ferromagnetic Crystal Fe$_{3}$GaTe$_{2}$
Heming Zha, Wei Li, Gaojie Zhang, Wenjing Liu, Liwei Deng, Qi Jiang, Mao Ye, Hao Wu, Haixin Chang, and Shan Qiao
Chin. Phys. Lett.    2023, 40 (8): 087501 .   DOI: 10.1088/0256-307X/40/8/087501
Abstract   HTML   PDF (3878KB)
Fe$_{3}$GaTe$_{2}$, a recently discovered van der Waals ferromagnetic crystal with the highest Curie temperature and strong perpendicular magnetic anisotropy among two-dimensional (2D) magnetic materials, has attracted significant attention and makes it a promising candidate for next-generation spintronic applications. Compared with Fe$_{3}$GeTe$_{2}$, which has the similar crystal structure, the mechanism of the enhanced ferromagnetic properties in Fe$_{3}$GaTe$_{2}$ is still unclear and needs to be investigated. Here, by using x-ray magnetic circular dichroism measurements, we find that both Ga and Te atoms contribute to the total magnetic moment of the system with antiferromagnetic coupling to Fe atoms. Our first-principles calculations reveal that Fe$_{3}$GaTe$_{2}$ has van Hove singularities at the Fermi level in nonmagnetic state, resulting in the magnetic instability of the system and susceptibility to magnetic phase transitions. In addition, the calculation results about the density of states in ferromagnetic states of two materials suggest that the exchange interaction between Fe atoms is strengthened by replacing Ge atoms with Ga atoms. These findings indicate the increase of both the itinerate and local moments in Fe$_{3}$GaTe$_{2}$ in view of Stoner and exchange interaction models, which results in the enhancement of the overall magnetism and a higher Curie temperature. Our work provides insight into the underlying mechanism of Fe$_{3}$GaTe$_{2}$'s remarkable magnetic properties and has important implications for searching 2D materials with expected magnetic properties in the future.
All-Orders Evolution of Parton Distributions: Principle, Practice, and Predictions
Pei-Lin Yin, Yin-Zhen Xu, Zhu-Fang Cui, Craig D. Roberts, and José Rodríguez-Quintero
Chin. Phys. Lett.    2023, 40 (9): 091201 .   DOI: 10.1088/0256-307X/40/9/091201
Abstract   HTML   PDF (1758KB)
Parton distribution functions (PDFs) are defining expressions of hadron structure. Exploiting the role of effective charges in quantum chromodynamics, an algebraic scheme is described which, given any hadron's valence parton PDFs at the hadron scale, delivers predictions for all its PDFs (unpolarized and polarized) at any higher scale. The scheme delivers results that are largely independent of both the value of the hadron scale and the pointwise form of the charge; and, inter alia, enables derivation of a model-independent identity that relates the strength of the proton's gluon helicity PDF, $\Delta G_p^\zeta$, to that of the analogous singlet polarized quark PDF and valence quark momentum fraction. Using available data fits and theory predictions, the identity yields $\Delta G_p(\zeta_{_{\scriptstyle \rm C}}=\sqrt{3}\,{\rm GeV})=1.48(10)$. It furthermore entails that the measurable quark helicity contribution to the proton spin is $\tilde a_{0p}^{\zeta_{_{\scriptstyle \rm C}}}=0.32(3)$, thereby reconciling contemporary experiment and theory.
Gate-Tunable Negative Differential Conductance in Hybrid Semiconductor–Superconductor Devices
Ming-Li Liu, Dong Pan, Tian Le, Jiang-Bo He, Zhong-Mou Jia, Shang Zhu, Guang Yang, Zhao-Zheng Lyu, Guang-Tong Liu, Jie Shen, Jian-Hua Zhao, Li Lu, and Fan-Ming Qu
Chin. Phys. Lett.    2023, 40 (6): 067301 .   DOI: 10.1088/0256-307X/40/6/067301
Abstract   HTML   PDF (11399KB)
Negative differential conductance (NDC) serves as a crucial characteristic that reveals various underlying physics and transport process in hybrid superconducting devices. We report the observation of gate-tunable NDC outside the superconducting energy gap on two types of hybrid semiconductor–superconductor devices, i.e., normal metal–superconducting nanowire–normal metal and normal metal–superconducting nanowire–superconductor devices. Specifically, we study the dependence of the NDCs on back-gate voltage and magnetic field. When the back-gate voltage decreases, these NDCs weaken and evolve into positive differential conductance dips; and meanwhile they move away from the superconducting gap towards high bias voltage, and disappear eventually. In addition, with the increase of magnetic field, the NDCs/dips follow the evolution of the superconducting gap, and disappear when the gap closes. We interpret these observations and reach a good agreement by combining the Blonder–Tinkham–Klapwijk (BTK) model and the critical supercurrent effect in the nanowire, which we call the BTK-supercurrent model. Our results provide an in-depth understanding of the tunneling transport in hybrid semiconductor–superconductor devices.
Prediction of Thermal Conductance of Complex Networks with Deep Learning
Changliang Zhu, Xiangying Shen, Guimei Zhu, and Baowen Li
Chin. Phys. Lett.    2023, 40 (12): 124402 .   DOI: 10.1088/0256-307X/40/12/124402
Abstract   HTML   PDF (2362KB)
Predicting thermal conductance of complex networks poses a formidable challenge in the field of materials science and engineering. This challenge arises due to the intricate interplay between the parameters of network structure and thermal conductance, encompassing connectivity, network topology, network geometry, node inhomogeneity, and others. Our understanding of how these parameters specifically influence heat transfer performance remains limited. Deep learning offers a promising approach for addressing such complex problems. We find that the well-established convolutional neural network models AlexNet can predict the thermal conductance of complex network efficiently. Our approach further optimizes the calculation efficiency by reducing the image recognition in consideration that the thermal transfer is inherently encoded within the Laplacian matrix. Intriguingly, our findings reveal that adopting a simpler convolutional neural network architecture can achieve a comparable prediction accuracy while requiring less computational time. This result facilitates a more efficient solution for predicting the thermal conductance of complex networks and serves as a reference for machine learning algorithm in related domains.
Optical Tunable Moiré Excitons in Twisted Hexagonal GaTe Bilayers
Jinsen Han, Kang Lai, Xiaoxiang Yu, Jiahao Chen, Hongli Guo, and Jiayu Dai
Chin. Phys. Lett.    2023, 40 (6): 067801 .   DOI: 10.1088/0256-307X/40/6/067801
Abstract   HTML   PDF (16524KB)
Optical fine-tunable layer-hybridized Moiré excitons are highly in demand for emerging many-body states in two-dimensional semiconductors. We report naturally confined layer-hybridized bright Moiré excitons with long lifetimes in twisted hexagonal GaTe bilayers, using ab initio many-body perturbation theory and the Bethe–Salpeter equation. Due to the hybridization of electrons and holes between layers, which enhances the brightness of excitons, the twisted bilayer system becomes attractive for optical applications. We find that in both R and H-type stacking Moiré superlattices, more than 200 meV lateral quantum confinements occur on exciton energies, which results in two scenarios: (1) The ground state bright excitons $\mathrm{X}_\mathrm{A}$ are found to be trapped at two high-symmetry points, with opposite electric dipoles in the R-stacking Moiré supercell, forming a honeycomb superlattice of nearest-neighbor dipolar attraction. (2) For H-stacking case, the $\mathrm{X}_\mathrm{A}$ is found to be trapped at only one high-symmetry point exhibiting a triangular superlattice. Our results suggest that twisted h-GaTe bilayer is one of the promising systems for optical fine-tunable excitonic devices and provide an ideal platform for realizing strong correlated Bose–Hubbard physics.