%A An-Zhi Xie, Tian-Zhen Wen, Ji-Ling Li %T Fe-Doped All-Boron Fullerene B$_{40}$ with Tunable Electronic and Magnetic Properties as Single Molecular Devices %0 Journal Article %D 2019 %J Chin. Phys. Lett. %R 10.1088/0256-307X/36/11/117302 %P 117302%V 36 %N 11 %U {https://cpl.iphy.ac.cn/CN/abstract/article_105455.shtml} %8 2019-10-15 %X Systematic theoretical calculations are performed to investigate the dopant effect of Fe on stability, electronic and magnetic properties of the newly synthesized all-boron fullerene B$_{40}$. The results reveal that as a typical ferromagnetic element, Fe atoms can either be chemically externally adsorbed on, or internally encapsulated in the cage of B$_{40}$, with the binding energies ranging from 3.07 to 5.31 eV/atom. By introducing the dopant states from the doped Fe atom, the energy gaps of the Fe-doped B$_{40}$-based metallofullerenes are decreased. Our spin-polarized calculations indicate that Fe-doped metallofullerenes have attractive magnetic properties: with alternative binary magnetic moments between 4.00$\mu_{_{\rm B}}$ and 2.00$\mu_{_{\rm B}}$, depending on the resident sites of the doped Fe atom. The findings of the tunable electronic properties and binary magnetic moments of the Fe-doped B$_{40}$-based metallofullerenes imply that this type of metallofullerene may be applied in single molecular devices.