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An Anderson Impurity Interacting with the Helical Edge States in a Quantum
Spin Hall Insulator ∗
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Using the natural orbitals renormalization group (NORG) method, we investigate the screening of the local spin
of an Anderson impurity interacting with the helical edge states in a quantum spin Hall insulator. It is found
that there is a local spin formed at the impurity site and the local spin is completely screened by electrons in
the quantum spin Hall insulator. Meanwhile, the local spin is screened dominantly by a single active natural
orbital. We then show that the Kondo screening mechanism becomes transparent and simple in the framework of
the natural orbitals formalism. We project the active natural orbital respectively into real space and momentum
space to characterize its structure. We confirm the spin-momentum locking property of the edge states based on
the occupancy of a Bloch state on the edge to which the impurity couples. Furthermore, we study the dynamical
property of the active natural orbital represented by the local density of states, from which we observe the Kondo
resonance peak.
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The quantum spin Hall (QSH) insulator, first dis-
covered in HgTe/CdTe quantum wells[1] following its
theoretical prediction,[2] has been tremendously inves-
tigated. It is characterized by a full insulating gap
in the bulk but one-dimensional gapless conducting
edge states with opposite spins counterpropagating at
each edge, where the spin-orbit coupling (SOC) plays
an essential role.[3,4] The edge states are of nontriv-
ial helical liquid[5] with the quantized conductance of
𝐺 = 𝑒2/ℎ for each single helical edge state protected
by the time-reversal symmetry (TRS).

Since the TRS protects the helical edge states from
backscattering, they are robust against weak interac-
tions and perturbations that preserve the TRS.[5−7]

Particularly, a single edge electron cannot be backscat-
tered by an impurity without internal degrees of free-
dom. However, a quantum impurity interacting with
the helical edge states may give rise to a nontrivial per-
turbation that allows backscattering accompanied by
a spin-flip scattering. The effect of a quantum impu-
rity on the conductance of the helical edge states has
been investigated.[5,8−11] Maciejko and coworkers[8]
argued that the conductance of a helical edge state ex-
hibits a logarithmic temperature dependence at high
temperature resulting from the backscattering by a
magnetic impurity, while it restores to the quantized
value 𝑒2/ℎ at 𝑇 = 0 due to the formation of a Kondo
singlet with a complete screening of the impurity spin
by the helical liquid. On the other hand, the influence
of the SOC on the Kondo effect in QSH insulators has
also been studied.[12−19] Nevertheless, it lacks works
that focus on the screening of the local spin by the
Kondo cloud for a quantum impurity interacting with

a helical liquid in a quantum spin Hall insulator.
The Kane–Mele (KM) model[6,20] is a spinful

model preserving the TRS and exhibits a QSH ef-
fect. The ground state of the KM model defined
on a graphene ribbon is a QSH insulator with the
helical edge states in each edge. This model is re-
lated to the spinless Haldane model[21] which breaks
the TRS and it can be considered as two copies of
the Haldane model. A single Anderson impurity cou-
pled to a zigzag graphene edge at a finite temper-
ature has been investigated by the quantum Monte
Carlo simulations.[22,23] On the other hand, the spa-
tial structure of spin correlations around an Ander-
son impurity at the edge of a silicene-like topologi-
cal insulator has been studied by the density matrix
renormalization group method.[24] In this Letter, us-
ing the newly developed natural orbitals renormaliza-
tion group method,[25] we study the mechanism un-
derlying the screening of the local spin of an Ander-
son impurity interacting with the helical edge states
represented by the KM model at zero temperature.

Model and Method.—The total Hamiltonian of the
KM model with an Anderson impurity at an edge is
given by

𝐻 = 𝐻KM +𝐻imp +𝐻hyb, (1)

where 𝐻KM denotes the KM model defined in a hon-
eycomb lattice ribbon with zigzag edges, 𝐻imp denotes
an Anderson impurity near an edge, 𝐻hyb represents
the hybridization between the Anderson impurity and
a site at the edge coupled with the impurity. For sim-
plicity, we consider the case in which the impurity is
coupled to an edge of sublattice A, as shown in Fig. 1.
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Fig. 1. Sketch of a KM model with an Anderson impurity
at an edge in a honeycomb lattice ribbon. The ribbon is
periodic along the 𝑥 direction and open along the 𝑦 direc-
tion, i.e., the edges are of zigzag. The unit cell of hon-
eycomb lattice with zigzag edge is shown as the dashed
black parallelogram. The cyan filled circles denote sub-
lattice A and open circles sublattice B of the honeycomb
lattice. The green lines denote the nearest-neighbor hop-
ping 𝑡 connecting the two sublattices. The spin-orbital
coupling term connecting the same sublattice is denoted
as the red dashed arrows, and its sign is associated with
𝜈𝑖𝑗 in Eq. (2). Here 𝑎1 and 𝑎2 represent the unit cell vec-
tors of the honeycomb lattice. The Anderson impurity is
marked by the filled purple circle and it hybridizes with
a site belonging to sublattice A along the edge with hy-
bridization 𝑉 , the on-site Hubbard 𝑈 is at the impurity
site.

The Hamiltonian of the KM model 𝐻KM includes
two parts as follows:

𝐻KM = 𝐻𝑡 +𝐻SO,

𝐻𝑡 = −𝑡
∑︀

⟨𝑖𝑗⟩𝜎
𝑐†𝑖𝜎𝑐𝑗𝜎,

𝐻SO = 𝑖𝜆SO

∑︀
⟨⟨𝑖𝑗⟩⟩𝛼𝛽

𝜈𝑖𝑗𝑐
†
𝑖,𝛼𝜎

𝑧
𝛼𝛽𝑐𝑗,𝛽 .

(2)

Here 𝐻𝑡 describes the tight-binding band in a honey-
comb lattice, 𝐻SO denotes the spin-orbital coupling
part; 𝑐†𝑖𝜎 creates an electron at site 𝑖 with spin com-
ponent 𝜎 =↑, ↓, and 𝑡 is the nearest-neighbor hopping
parameter with 𝑡 set to 1 in all the following calcula-
tions; ⟨⟨𝑖, 𝑗⟩⟩ denotes the next-nearest-neighbor hop-
ping with a complex hopping integral, and 𝜆SO rep-
resents the strength of spin-orbital coupling. The pa-
rameter 𝜈𝑖𝑗 = −𝜈𝑗𝑖 = ±1 depends on the orientation
of the two nearest-neighbor bonds that an electron
hops from site 𝑗 to 𝑖, namely 𝜈𝑖𝑗 = +1 if the elec-
tron turns left in the hopping from site 𝑗 to 𝑖, and
𝜈𝑖𝑗 = −1 if it turns right, as shown in Fig. 1. In the
spin-orbital coupling part 𝐻SO, 𝜎𝑧

𝛼𝛽 is the 𝑧 Pauli ma-
trix which further distinguishes the spin-up and spin-
down states with opposite next-nearest-neighbor hop-
ping amplitudes. The ground state of the KM model
on a half-filled honeycomb lattice ribbon with zigzag
edges describes a quantum spin Hall insulator.

The Hamiltonians of an Anderson impurity and its
hybridization with edge electrons are given by

𝐻imp = −𝜇(𝑛imp,↑ + 𝑛imp,↓) + 𝑈𝑛imp,↑𝑛imp,↓,

𝐻hyb = 𝑉
∑︀
𝜎
(𝑐†𝑟𝑖,𝜎𝑐imp,𝜎 + 𝑐†imp,𝜎𝑐𝑟𝑖,𝜎).

(3)

Here 𝑛imp,↑(𝑛imp,↓) represents the impurity occupa-
tion number operator with spin component 𝜎 =↑ (↓),

−𝜇 denotes the single-particle energy of the impu-
rity, and 𝑈 the strength of Hubbard interaction at
the impurity site. The impurity hybridizes with a
site located at 𝑟𝑖 in the edge with hybridization 𝑉 ;
𝑐†𝑟𝑖,𝜎(𝑐𝑟𝑖,𝜎) and 𝑐†imp,𝜎(𝑐imp,𝜎) represent the creation
(annihilation) operators at the site hybridized with
the impurity and at the impurity site, respectively.

The total Hamiltonian 𝐻 preserves both charge
U(1)charge symmetry and spin U(1)spin symmetry,
even though the spin-rotation symmetry SU(2) is bro-
ken by the spin-orbital coupling term. Thus, the 𝑧-
component of the total spin is conserved. Further-
more, the whole system preserves the TRS. In the cal-
culations, we consider a hall-filling case for the band
structure with the spin-orbital coupling 𝜆SO = 0.1.
A particle-hole symmetric representation of the Hub-
bard interaction that sets 𝜇 = 𝑈/2 for the half-filling
case is employed. We set the hybridization 𝑉 = 0.5.

We employ a newly developed numerical many-
body approach, namely the natural orbitals renormal-
ization group (NORG), which works in the Hilbert
space constructed from a set of natural orbitals. In
practice, the realization of the NORG essentially in-
volves a representation transformation from site repre-
sentation into natural orbitals representation through
iterative orbital rotations (see Ref. [25] for details).
The NORG is naturally appropriate for dealing with
a quantum impurity system. As shown in Ref. [25],
for a quantum impurity system most of the natural
orbitals exponentially rush into double occupancy or
empty, while only a small number of natural orbitals,
equal to the number of impurities, deviate well from
full occupancy and empty, namely active natural or-
bitals with half filling or nearly, which play a key role
in constructing the ground state wave function.
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Fig. 2. Natural orbitals occupancy distribution 𝑛𝑖 for the
ground state with the Hubbard 𝑈 = 4.0. The inset shows
the corresponding occupancies for spin-up 𝑛↑ and spin-
down 𝑛↓. The calculation is carried out in an 𝑆𝑧

tot = −1/2
subspace and the size of the honeycomb lattice ribbon em-
ployed is 𝐿 = 𝐿𝑥 × 𝐿𝑦 with 𝐿𝑥 = 20 and 𝐿𝑦 = 3.

Results.—Figure 2 shows the calculated natural or-
bitals occupancies 𝑛𝑖 for the ground state carried out
in an 𝑆𝑧

tot = −1/2 subspace (here the number of elec-
trons is odd). As we see, all the natural orbitals ex-
ponentially rush into full occupancy or empty except
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two, among which we find that the occupancies for
one natural orbital are 0 (1) for spin up (down), i.e.,
𝑛↑ ≈ 0 and 𝑛↓ ≈ 1, while the occupancies for the
other are 0.5 for both spin up and down, i.e., 𝑛↑ = 0.5
and 𝑛↓ = 0.5. Therefore, only the natural orbital with
occupancies 𝑛↑ = 0.5 and 𝑛↓ = 0.5 is active, indexed
as the 61st natural orbital in Fig. 2. Thus, there is
only one active natural orbital for the edge states in-
teracting with an magnetic impurity. This makes the
Kondo screening mechanism transparent and simple,
as presented in the following.

Due to the spin-orbital coupling, we consider the
screening of the 𝑧-component of the impurity spin by
the spatially extended Kondo screening cloud. Specif-
ically, this is described by the spin correlation be-
tween the magnetic impurity spin and the electron
spin. Here we use 𝑆ANo to denote the spin of electrons
occupying the active natural orbital, and 𝑠𝑖 the spin of
electrons occupying the 𝑖-th site. Accordingly, we cal-
culated the spin correlation ⟨𝑆𝑧

imp𝑠
𝑧
ANo⟩ between the

active natural orbital and magnetic impurity as well
as the following integrated spin correlation ⟨𝑆𝑧

imp𝑠
𝑧⟩

where 𝑠𝑧 =
∑︀2𝐿

𝑖=1 𝑠
𝑧
𝑖 . On the other hand, the local

spin 𝑠 of electrons at the impurity site is determined
by

⟨(𝑆𝑧
imp)

2⟩ = 𝑠(𝑠+ 1)

3
. (4)
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Fig. 3. (a) Local spin 𝑠 of electrons at the impurity site
and (b) spin correlation ⟨𝑆𝑧

imp𝑠
𝑧
ANo⟩ between the active

natural orbital and magnetic impurity as well as the inte-
grated spin correlation ⟨𝑆𝑧

imp𝑠
𝑧⟩ as functions of the Hub-

bard 𝑈 . The inset in (a) shows the 𝑧-component of the
local moment ⟨(𝑆𝑧

imp)
2⟩ at the impurity site. The dot-

ted lines mark corresponding values in the large Hubbard
𝑈 → ∞ limit. The size of the honeycomb lattice ribbon
employed is 𝐿 = 𝐿𝑥 × 𝐿𝑦 with 𝐿𝑥 = 50 and 𝐿𝑦 = 3.

As we see from Fig. 3, the local spin 𝑠 is formed at
the impurity site and it increases with 𝑈 . In the large
Hubbard 𝑈 limit 𝑈 → ∞, the local spin 𝑠 goes to
1
2 with double occupancy suppressed. Meanwhile the
calculations show that ⟨𝑆𝑧

imp⟩ = 0 in the 𝑆𝑧
tot = −1/2

subspace. This means that no free local moment on
the impurity site can be polarized and hence the im-
purity spin is completely screened by electrons in the
graphene ribbon. In such a case, no spin-flip scat-
tering exists for an electron propagating to the im-
purity from far distance, the conductance of a helical
edge state will be thus quantized as 𝑒2/ℎ. The ther-
mal fluctuations at a finite temperature will partially
destruct the screening and make the conductance de-
creasing from 𝑒2/ℎ. Moreover, the impurity is in an-
tiferromagnetic coupling with the electrons occupying
the active natural orbital. By comparison, the spin
correlation ⟨𝑆𝑧

imp𝑠
𝑧
ANo⟩ nearly coincides with the inte-

grated spin correlation ⟨𝑆𝑧
imp𝑠

𝑧⟩, indicating that the
active natural orbital dominantly screens the impurity
spin in the 𝑧 direction. In the large Hubbard 𝑈 limit
𝑈 → ∞, the spin correlation ⟨𝑆𝑧

imp𝑠
𝑧
ANo⟩ → −1/4 as

well as the integrated spin correlation ⟨𝑆𝑧
imp𝑠

𝑧⟩, which
demonstrates that the active natural orbital screens
the impurity spin solely.

To characterize the structure of the active natural
orbital, we project it into real space (site representa-
tion, namely Wannier representation) and momentum
space, respectively. To do so, we consider the follow-
ing Fourier transformation of the electron operator in
a graphene ribbon,

𝑐†𝑛𝑚,𝛼,𝐴 = 1√
𝐿𝑥

∑︀
𝑘

𝑒−𝑖𝑘𝑋𝑛𝑚,𝐴𝑎†
𝑛,𝛼(𝑘),

𝑐†𝑛𝑚,𝛼,𝐵 = 1√
𝐿𝑥

∑︀
𝑘

𝑒−𝑖𝑘𝑋𝑛𝑚,𝐵𝑏†𝑛,𝛼(𝑘).
(5)

Noting that the graphene ribbon with zigzag edges is
periodic in the 𝑥 direction (Fig. 1). Here (𝑛𝑚,𝐴) or
(𝑛𝑚,𝐵) labels a lattice site, (𝑛𝑚) labels a unit cell,
and A or B labels sublattice; 𝑎†

𝑛,𝛼(𝑘) or 𝑏†𝑛,𝛼(𝑘) cre-
ates an electron with wave vector 𝑘 at sublattice A or
B, respectively.

Thus, we can easily obtain the amplitude |𝑤𝑚
𝑖 |2

of the 𝑚-th natural orbital projected into the 𝑖-th
Wannier orbital by 𝑑†

𝑚 =
∑︀2𝐿

𝑖=1 𝑤
𝑚
𝑖 𝑐†𝑖 from the NORG

transformation. Likewise, we can project the 𝑚-th
natural orbital into a Bloch state with wave vector 𝑘
in momentum space via 𝑑†

𝑚 =
∑︀

𝑘 𝑢
𝑚
𝑘 𝑐†𝑘, where 𝑐†𝑘

denotes the creation operator in momentum space.
The 𝑢𝑚

𝑘 can be obtained from the NORG transforma-
tion in combination with the Fourier transformation
shown in Eq. (5). Meanwhile, the occupancy 𝑛(𝑘) of
a Bloch state with wave vector 𝑘 can be obtained by
𝑛(𝑘) =

∑︀2𝐿
𝑚=1 𝑛𝑚|𝑢𝑚

𝑘 |2 with 𝑛𝑚 being the occupation
number of the 𝑚-th natural orbital.

We now consider the total weight 𝑊𝐴(𝐵) con-
tributed by the sites belonging to sublattice A(B) in
the edge to which the magnetic impurity couples (the
upper edge), namely 𝑊𝐴(𝐵) =

∑︀
𝑖∈𝐴(𝐵) |𝑤ANo

𝑖 |2 with
site 𝑖 belonging to sublattice A(B) located at the up-
per edge. The calculations show that 𝑊𝐴 ≥ 95% and
𝑊𝐵 ≥ 2% in all cases. This means that the sites
whose electrons screen the impurity spin mainly be-
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long to sublattice A in the upper edge, which hence
support the Kondo screening cloud.
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Fig. 4. Amplitude of the active natural orbital projected
into (a) real space and (b) momentum space in the upper
edge with the Hubbard 𝑈 = 0, 2, and 12, respectively.
The Fermi energy of the KM model is 𝜀𝑘𝐹

= 0 with the
Fermi wave vector 𝑘𝐹 = 𝜋. The size of the honeycomb
lattice ribbon employed is 𝐿 = 𝐿𝑥 ×𝐿𝑦 with 𝐿𝑥 = 50 and
𝐿𝑦 = 3.

We then project the active natural orbital respec-
tively into momentum space and real space in the up-
per edge. The amplitude of the active natural orbital
projected into real space |𝑤𝑖|2 and momentum space
|𝑢𝑘|2 are shown in Figs. 4(a) and 4(b), respectively.
For the Hubbard 𝑈 = 0, the site (labeled as site 50)
which links directly with the impurity dominantly con-
stitutes the active natural orbital, indicating that the
active natural orbital is very localized. As the Hub-
bard 𝑈 increases, all the sites namely Wannier orbitals
belonging to sublattice A in the upper edge tend to
equally constitute the active natural orbital, indicat-
ing that the active natural orbital becomes extended.
In contrast, in momentum space, the single-particle
states near the Fermi energy (low-energy excitations)
become dominant to participate in constituting the
active natural orbital as the Hubbard 𝑈 increases. Es-
pecially, the single-particle states at the Fermi energy
level solely constitute the active natural orbital in the
large Hubbard 𝑈 limit, i.e., |𝑢𝑘𝐹=𝜋|2 → 1 as 𝑈 → ∞.

Results of the occupancy 𝑛(𝑘) of a Bloch state with
wave vector 𝑘 in the upper edge are shown in Fig. 5,
where 𝑛A(𝑘) and 𝑛B(𝑘) denote the occupancy for sub-
lattice A and B, respectively. As we see, the electrons
with different spins are separated, resulting from the
spin-orbital coupling. The difference |𝑛↑(𝑘) − 𝑛↓(𝑘)|
of the occupancies for different spins near the Fermi
wave vector 𝑘𝐹 = 𝜋 is as large as about 1.0 for sub-
lattice A, while that for sublattice B is about 0.15, in
contrast with the occupancy for a Bloch state in the
bulk namely 𝑛↑ = 𝑛↓ = 0.5. This also means that
the edge states reside mainly in sublattice A. Here we
emphasize that the occupancies at the Fermi wave vec-
tor 𝑘𝐹 = 𝜋, namely the time-reversal invariant point,
show 𝑛A

↑ (𝑘𝐹 ) = 𝑛A
↓ (𝑘𝐹 ) and 𝑛B

↑ (𝑘𝐹 ) = 𝑛B
↓ (𝑘𝐹 ), which

is due to the Kramers degeneracy. Moreover, the elec-
tron spins are opposite with respect to the Fermi wave

vector 𝑘𝐹 = 𝜋, indicating the spin-momentum locking
of the edge states.
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Fig. 5. Occupancy 𝑛(𝑘) of a Bloch state with wave vector
𝑘 for (a) sublattice A and (b) sublattice B in the upper
edge with the Hubbard 𝑈 = 0, 2, and 12, respectively.
The Fermi energy of the KM model is 𝜀𝑘𝐹

= 0 with the
Fermi wave vector 𝑘𝐹 = 𝜋. The size of the honeycomb
lattice ribbon employed is 𝐿 = 𝐿𝑥 ×𝐿𝑦 with 𝐿𝑥 = 50 and
𝐿𝑦 = 3.
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Fig. 6. Local density of states 𝜌ANo,↑(𝜔) at the active
natural orbital for the Hubbard 𝑈 = 4 and 8 and with the
Lorentzian broadening factor 𝜂 = 0.05. The Fermi energy
of the KM model is 𝜀𝑘𝐹

= 0 with the Fermi wave vector
𝑘𝐹 = 𝜋. The calculations are carried out on a honeycomb
lattice ribbon of size 𝐿 = 𝐿𝑥 × 𝐿𝑦 with 𝐿𝑥 = 20 and
𝐿𝑦 = 3.

In the Lehmann representation, the local one-
particle Green’s function defined at sites or orbitals
can be expressed as

𝐺𝑖,𝜎(𝜔) =⟨0|𝑐𝑖𝜎
1

𝜔 + 𝑖𝜂 − (𝐻 − 𝐸0)
𝑐†𝑖𝜎|0⟩

+ ⟨0|𝑐†𝑖𝜎
1

𝜔 + 𝑖𝜂 + (𝐻 − 𝐸0)
𝑐𝑖𝜎|0⟩, (6)

where |0⟩ and 𝐸0 mean the ground state and ground-
state energy, respectively. The local density of states
(LDOS) is given by 𝜌𝑖,𝜎(𝜔) = − 1

𝜋 Im(𝐺𝑖,𝜎) with a
Lorentzian broadening factor 𝜂 → 0. We focus on
the LDOS 𝜌ANo,↑(𝜔) at the active natural orbital,

067301-4

http://cpl.iphy.ac.cn


CHIN.PHYS. LETT. Vol. 35, No. 6 (2018) 067301 Express Letter

and calculate this quantity using the correction vector
method.[26,27]

Figure 6 shows the LDOS 𝜌ANo,↑(𝜔) at the active
natural orbital for the Hubbard 𝑈 = 4 and 8 with
𝜂 = 0.05. From Fig. 6, we see a peak at 𝜔 = 0, i.e.,
at the Fermi energy. This is actually the Kondo reso-
nance peak, and the resonance peak is enhanced when
increasing the Hubbard 𝑈 .

In summary, we have investigated an Anderson im-
purity interacting with the helical edge states in a
quantum spin Hall insulator using the NORG method,
and find that there is a local spin formed at the im-
purity site and then the impurity spin is completely
screened by electrons in the quantum spin Hall insu-
lator, namely the Kondo screening effect. Meanwhile,
there exists a single active natural orbital which dom-
inantly screens the local spin. The active natural or-
bital is well characterized by projecting it respectively
into real space and momentum space. This makes the
Kondo screening mechanism transparent and simple.
We further confirm the spin-momentum locking prop-
erty of the edge states. The Kondo resonance peak is
also observed from the local density of states at the
active natural orbital. Our study is well helpful to
further studying magnetic impurities in quantum spin
Hall insulators.
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