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Chiral Anomaly-Enhanced Casimir Interaction between Weyl Semimetals
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We theoretically study the Casimir interaction between Weyl semimetals. When the distance 𝑎 between semi-
infinite Weyl semimetals is in the micrometer regime, the Casimir attraction can be enhanced by the chiral
anomaly. The Casimir attraction depends sensitively on the relative orientations between the separations (𝑏1, 𝑏2)
of Weyl nodes in the Brillouin zone and show anisotropic behavior for the relative orientation of these separations
(𝑏1, 𝑏2) when they orient parallel to the interface. This anisotropy is quite larger than that in conventional
birefringent materials. The Casimir force can be repulsive in the micrometer regime if the Weyl semimetal slabs
are sufficiently thin and the direction of Weyl nodes separations (𝑏1, 𝑏2) is perpendicular to the interface. The
Casimir attraction between Weyl semimetal slabs decays slower than 1/𝑎4 when the Weyl nodes separations 𝑏1
and 𝑏2 are both parallel to the interface.
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The quantum fluctuation of electromagnetic (EM)
field can induce an attractive force between two par-
allel, perfect conducting, uncharged slabs. This phe-
nomenon is known as the Casimir effect.[1] In 1955,
Lifshitz developed a general framework to describe the
Casimir and van der Waals interactions. For spatial
dimensions from a few micrometers to nanometers,
the Casimir–Lifshitz interaction plays an important
role, which dominates the fabrication, performance
and function of micro- and nano-electromechanical
systems. Casimir physics is an attractive topic for
both theoretical and experimental studies in the past
decades. Exotic proposals in this field have been ver-
ified in the past few years, e.g., the repulsive Casimir
interaction[2] between dielectrics with the liquid filled
in between, thermal Casimir effect[3] (the thermal fluc-
tuation of virtual photons), critical Casimir effect in-
duced by thermal fluctuation near the phase tran-
sition point,[4] dynamical Casimir effect,[5] Casimir–
Lifshitz torque between liquid crystal and birefringent
material,[6] etc.

Casimir repulsion has attracted great attention
for the quantum levitation and significant reduc-
tion of friction in micromechanical systems. Casimir
repulsions have been investigated in different sys-
tems, e.g., by using special geometry[7] or chiral
metamaterial,[8] applying adjustable magnetic field,[9]

filling high-reflective liquid between dielectrics,[2] in-
serting left-handed metamaterial[10] or optical active
materials[11] between plates, and utilizing the rota-
tion of the particle near a bi-isotropic material.[12] In
recent years, Casimir repulsions between topological

materials, i.e., topological insulators,[13] quantum Hall
slabs,[14] Chern insulators,[15] and Weyl semimetals
(WSMs),[16] have been widely studied. The (anoma-
lous) Hall conductivity induced non-vanishing off-
diagonal elements of the Fresnel matrix are crucial
for the formation of Casimir repulsion in topological
materials.

Weyl semimetal[17] provides a new platform for
the investigation of Weyl fermions.[18,19] A pair of
Weyl nodes with opposite chiralities in the Brillouin
zone have the same nature as massless Weyl fermions
in quantum field theory.[20−22] Chiral anomaly[23,24]

is the unique nature of Weyl fermions. Significant
evidence of chiral anomalies for the recent discov-
ered WSMs have been reported, e.g., the surface
fermi arc, chiral magnetic effect and negative longi-
tudinal magnetoresistance.[25,26] The topological non-
trivial EM response of WSM provides another ap-
proach for the identification of chiral anomaly.[27−31]

In quantum field theory, the universal part of the chi-
ral anomaly is described by the 𝜃 term in the ac-

tion, 𝒮𝛩 = 𝑒2

32𝜋2

∫︀
𝑑𝑡𝑑3𝑟[𝛩(𝑡, 𝑟)𝜀𝜇𝜈𝜌𝜎𝐹𝜇𝜈𝐹𝜌𝜎]. Here

𝛩(𝑡, 𝑟) = −2𝑏0𝑡 + 2𝑏 · 𝑟, (2𝑏0, 2𝑏) is the separation
of the two Weyl nodes in the energy and momentum
spaces. In this work, we give a systematic investiga-
tion of the Casimir interactions between WSM slabs.
All possible configurations are considered: the separa-
tions of Weyl nodes, 𝑏1 and 𝑏2, are both perpendicu-
lar to or parallel to the interfaces for finite and semi-
infinite WSMs cases. We focus on the chiral anomaly
induced variations in Casimir physics, especially when
the distance, 𝑎, is in the micrometer regime. Detailed
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illustration of Casimir interaction between WSM slabs
is given in Fig. 1.
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Fig. 1. Illustration of Casimir interaction between WSM
slabs. Upper panel: two WSM slabs with thickness 𝑑 are
separated in the vacuum with distance 𝑎. The interfaces
of WSMs and the vacuum are chosen to be perpendicular
to the 𝑧-axis. Lower panel: The separation of Weyl nodes
in the Brillouin zone for the two WSM slabs, 2𝑏(1), 2𝑏(2).
When 2𝑏(1) and 2𝑏(2) are parallel to the interface, 𝜃1 and
𝜃2 are used to describe the angles between these vectors
and the 𝑥-axis. Here 𝜃2 − 𝜃1 describes the twisting angle
of the two WSMs.

According to the effective action, we can ob-
tain the EM response of WSMs with chiral anomaly
correction,[28,31,32] i.e., the modified Maxwell equa-
tions,

∇ ·𝐷 = 𝜂𝑒(𝑗) ·𝐵, (1)

∇×𝐻 =
1

𝑐

𝜕𝐷

𝜕𝑡
− 𝜂𝑒(𝑗) ×𝐸, (2)

∇ ·𝐵 = 0, (3)

∇×𝐸 = −1

𝑐

𝜕𝐵

𝜕𝑡
, (4)

where 𝜂 = 2𝑒2𝑏/𝜋~𝑐 describes the strength of chiral
anomaly in WSM, 𝑒(𝑗) is the unit vector parallel to the
separation of the two Weyl nodes in the Brillouin zone
for the 𝑗-th WSM (𝑗 = 1, 2). 𝐷 = 𝜀𝐸, 𝐻 = 𝐵/𝜇,
with 𝜀 and 𝜇 being the permittivity and permeability.

The zero-temperature Casimir energy density
stored in between two WSM slabs can be calculated
using the Casimir–Lifshitz formula,

𝐸𝐶(𝑎)

𝐴
=

~
8𝜋3

∫︁ ∞

0

𝑑𝜁

∫︁
𝑑𝑘‖

· ln det
[︁
I− 𝑒−2𝜅𝑎R(1)(𝑖𝜁,𝑘‖) · R(2)(𝑖𝜁,𝑘‖)

]︁
, (5)

where 𝐴 is the surface area of the WSM slabs, I is the
2 × 2 identity matrix, 𝜁 is the imaginary frequency,
𝑘‖ = (𝑘𝑥, 𝑘𝑦) is the wave vector parallel to the inter-

face, 𝜅 =
√︁
𝑘2
‖ + 𝜁2/𝑐2, R(1)(𝑖𝜁,𝑘‖) and R(2)(𝑖𝜁,𝑘‖)

are the Fresnel matrices of the two inside interfaces.
The Casimir force density is defined as

𝐹𝐶(𝑎)

𝐴
= − 1

𝐴

𝜕𝐸𝐶(𝑎)

𝜕𝑎
. (6)

The Fresnel matrices in Eq. (5) can be solved using
the Berreman matrix method.[33] We can find the fol-
lowing universal expressions of the reflection matrices
(see the Supplementary Materials for Berreman ma-
trices, detailed derivation and analytical expressions
of the reflection matrices):

R(1)
Cart =[𝑘3T(1)

11 − T(1)
12 Q][𝑘3T(1)

21 − T(1)
22 Q]−1, (7)

R(2)
Cart =[𝑘3T(2)

21 + T(2)
22 Q][𝑘3T(2)

11 + T(2)
12 Q]−1, (8)

where the subindex Cart denotes that the reflection
matrices are calculated in the Cartesian coordinates,

𝑘3 =
√︁
𝑘2
‖ − 𝜔2/𝑐2 and 𝜔 is the frequency of EM

waves, Q is a 2 × 2 matrix that describes the prop-
agation of EM waves in vacuum. The 4 × 4 matrix

T(𝑗) =

(︂
T(𝑗)
11 T(𝑗)

12

T(𝑗)
21 T(𝑗)

22

)︂
is the transfer matrix of the 𝑗-th WSM slab. The ex-
plicit expressions of these transfer matrices are

T(1) =[W]−1[W(1)]𝑒−K(1)𝑑[W(1)]−1, (9)

T(2) =[W]−1[W(2)]𝑒+K(2)𝑑[W(2)]−1, (10)

where W, W(1) and W(2) in Eqs. (9) and (10) con-
sist of the four eigen vectors of the Berreman matrices
in the vacuum and the two WSM slabs, respectively.
K(1) and K(2) are the corresponding eigenvalues of
the Berreman matrices in the WSM slabs. Table 1
shows detailed expressions of K(𝑗) for different config-
urations.

Table 1. Matrix K(𝑗) = diag[𝜆
(𝑗)
1 , 𝜆

(𝑗)
2 ,−𝜆

(𝑗)
2 ,−𝜆

(𝑗)
1 ] for

different configurations. In the following expressions, 𝑝3 =√︁
𝑘2
‖ − 𝜀𝜔2/𝑐2, 𝛿(𝑗) =

√︁
𝜂2 + 4𝜀[𝑘‖ · 𝑒(𝑗)]2.

𝑏(𝑗) ‖ 𝑒𝑧
𝜆
(𝑗)
1 =

√︀
𝑝3(𝑝3 − 𝑖𝜂/

√
𝜀),

𝜆
(𝑗)
2 =

√︀
𝑝3(𝑝3 + 𝑖𝜂/

√
𝜀)

𝑏(𝑗) ⊥ 𝑒𝑧
𝜆
(𝑗)
1 =

√︁
𝑝23 + 𝜂[𝜂 + 𝛿(𝑗)]/2𝜀,

𝜆
(𝑗)
2 =

√︁
𝑝23 + 𝜂[𝜂 − 𝛿(𝑗)]/2𝜀

Thus far, we obtain the complete calculation for-

mula of reflection matrices R(1)
Cart and R(2)

Cart. For
the practical evaluation of Casimir force, three issues
should be clarified. Firstly, in the Casimir–Lifshitz
formula, Eq. (5), the Fresnel matrices R(1) and R(2) are
decomposed into the transverse electric and transverse

magnetic modes. R(1)
Cart and R(2)

Cart shown in Eqs. (7)
and (8) are expressed in the Cartesian coordinates.
After some straightforward derivation, we find that

R(1), R(2) and R(1)
Cart, R

(2)
Cart are related to each other

via the following transformation,

R(1) =

(︃
−𝑘𝑦

𝑘‖

𝑘𝑥

𝑘‖
𝑘𝑘𝑥

𝑘‖𝑘𝑧

𝑘𝑘𝑦

𝑘‖𝑘𝑧

)︃
R(1)

Cart

(︃
−𝑘𝑦

𝑘‖
−𝑘𝑥𝑘𝑧

𝑘‖𝑘

𝑘𝑥

𝑘‖
−𝑘𝑦𝑘𝑧

𝑘‖𝑘

)︃
,

R(2) =

(︃
−𝑘𝑦

𝑘‖

𝑘𝑥

𝑘‖

− 𝑘𝑘𝑥

𝑘‖𝑘𝑧
− 𝑘𝑘𝑦

𝑘‖𝑘𝑧

)︃
R(2)

Cart

(︃
−𝑘𝑦

𝑘‖

𝑘𝑥𝑘𝑧

𝑘‖𝑘

𝑘𝑥

𝑘‖

𝑘𝑦𝑘𝑧

𝑘‖𝑘

)︃
.
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Here 𝑘‖ =
√︁

𝑘2𝑥 + 𝑘2𝑦, 𝑘 =
√︁
𝑘2‖ + 𝑘2𝑧 . It is easy

to check that the transformation of the multiplica-

tion R(1)
Cart · R

(2)
Cart → R(1) · R(2) is unitary. Hence,

we can safely replace R(1) · R(2) by R(1)
Cart · R

(2)
Cart in

the Casimir–Lifshitz formula. Secondly, the reflection

matrices R(1)
Cart(𝜔,𝑘‖) and R(2)

Cart(𝜔,𝑘‖) are given in
real-frequency representation. The analytical contin-
uation, 𝜔 → 𝑖𝜁, is necessary in the evaluation of the
Casimir–Lifshitz energy. Thirdly, for realistic WSM
materials, the quantum fluctuation of virtual photon
are effected by not only the proper boundary condi-
tions and the optical conductivity of Weyl fermions
near the Weyl nodes, but also the optical conductiv-
ity contributed from other energy bands in the bulk of
WSMs, we describe these topological trivial contribu-
tions using the following Ninham–Parsegian oscillator
model,

𝜀(𝑖𝜁) = 1 +

𝐾∑︁
𝑗=1

𝑔𝑗
𝜔2
𝑗 + 𝜁2 + 𝛾𝑗𝜁

, (11)

where 𝜔𝑗 and 𝑔𝑗 are the oscillator frequency and oscil-
lation strength of the 𝑗-th optical oscillator, 𝛾𝑗 is the
damping parameter, 𝐾 is the total number of oscilla-
tors. For realistic material TaAs,[18] we fit the parame-
ters using the first-principle calculation.[34] The fitting
parameters are given in Table 2 (the small damping
parameters 𝛾𝑗 are chosen to be zero).

Table 2. Fitting parameters of the Ninham–Parsegian os-
cillator model given in Eq. (11).

𝑗 1 2 3

~𝜔𝑗 (eV) 0.4066 1.1833 3.0650

𝑔𝑗 (eV
2) 0.3518 9.7594 26.1002

Figure 2 shows the Casimir force between two
semi-infinite WSMs as a function of distance for dif-
ferent orientations of the Weyl node separations. The
black line describes the Casimir force between nor-
mal dielectrics without chiral anomalies. In the large
distance regime 𝑎 > 1µm, the numerical calcula-

tion coincides with the analytical result,[35] 𝐹 (𝑎) =
−𝜒∞~𝑐/32𝜋2𝑎4, where 𝜒∞ is an integration which
depends only on the electrostatic dielectric constant
𝜀(0). For the parameters listed in Table 2, 𝜀(0) ≈ 13
gives 𝜒∞ = 4.09 and 𝐹 (𝑎)/𝐹0(𝑎) = 0.315. In the
short distance limit, 𝑎 → 0, the numerical result
is consistent with the asymptotic expression 𝐹 (𝑎) =
−𝜒0~/16𝜋2𝑎3,[34] where 𝜒0 is an integration that de-
pends on the permittivity function 𝜀(𝑖𝜁). For the pa-
rameters given in Table 2, 𝜒0 ≈ 4.95, which gives
𝐹 (𝑎)/𝐹0(𝑎) = 3.86×10−3𝑎 in SI units (see the dashed
lines in Fig. 2 for the asymptotic behaviors). Clearly,
one can see that the Casimir force can be enhanced
by the chiral anomaly in the large distance regime,
𝑎 > 1µm. In general, this can be understood from
the eigenvalues of the Berreman matrices shown in
Table 1. These eigenvalues determine the penetration
length of the virtual photon in WSMs. At the large
distance limit, 𝑎 → ∞, the Casimir force is dominated
by the virtual photon with 𝜅 → 0, so that 𝑝3 → 0.

The chiral anomaly terms in the eigenvalues listed in
Table 1 give significant corrections, which make the
eigenvalues conspicuously larger than conventional di-
electrics.
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Fig. 2. Casimir force between two semi-infinite WSM
slabs for different configures of the Weyl node separa-
tions, 𝑏1 and 𝑏2. 𝐹0(𝑎) = ~𝑐𝜋2/240𝑎4 is the absolute
value of Casimir force between ideal conductors. The
dashed lines show the asymptotic behaviors of the black
line (𝑏1 = 𝑏2 = 0) for the small and large distances, re-
spectively; |𝑏1| = |𝑏2| = 0.08 Å−1 for TaAs is fitted from

experiment.[18]
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Fig. 3. Casimir force as a function of distance for
𝑏1 = 𝑏2 = 0 and an additional strong Drude term in the
Ninham–Parsegian oscillator model. The insert shows the
permittivity as a function of imaginary frequency when
the Drude term is contained. In the far infrared regime,
the Drude term induces a divergence of the permittivity.

We must point out that there is another impor-
tant but completely different mechanism which can
also enhance the Casimir attraction in the microm-
eter regime. The optical conductivity of the gapless
quasiparticles in WSMs becomes divergent in the far
infrared regime, which can be described by an ex-
tra Drude term,[36] 𝑔D/𝜁(1 + 𝜏D𝜁), in the Ninham–
Parsegian oscillator model. Here 𝑔D and 𝜏D describes
the oscillation strength and damping ratio. The gray
regime in the inset of Fig. 3 shows the divergence of
permittivity induced by the extra Drude term. This
divergence drives the Casimir attraction away from
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the limit 𝐹 (𝑎)/𝐹0(𝑎) → constant in the micrometer
regime.
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Another significant influence of chiral anomaly
shown in Fig. 2 is the strong anisotropy of Casimir
force related to different orientations of the Weyl
nodes separations. As a comparison, Fig. 4 shows
anisotropic Casimir force in various birefringent ma-
terials. The maximal relative anisotropy of Casimir
force, defined as 𝐹 (𝑎, 𝜃 = 𝜋/2)/𝐹 (𝑎, 𝜃 = 0) − 1, is on
the magnitude of 1‰ for these conventional birefrin-
gent materials. In Fig. 2, for 𝑎 = 10µm, the maxi-
mal (𝑏1 = −𝑏2 ⊥ 𝑥𝑦 plane) and minimal (𝑏1, 𝑏2 ‖ 𝑥𝑦
plane, 𝜃2−𝜃1 = 𝜋/2) Casimir attraction has visible rel-
ative anisotropy on the scale of 1/10. The anisotropy
of Casimir force is one or even two magnitudes larger
than conventional birefringent materials in the mi-
crometer regime, and even more significant when the
distance 𝑎 is larger. The large anisotropy of Casimir
force in the micrometer regime provides experimental
evidence for the chiral anomaly.
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Fig. 5. Casimir force between two WSM slabs (thickness
𝑑 = 20nm) for different configures of the Weyl node sep-
arations. Parameters are chosen to be the same as Fig. 2.

Now we study the Casimir interaction between
thin films of WSM. Figure 5 shows Casimir force as a
function of distance for 𝑑 = 20 nm and various orien-
tations of 𝑏1, 𝑏2. Intuitively, one can find that the
ratio 𝐹 (𝑎)/𝐹0(𝑎) oscillates with the increasing dis-
tance between the two WSM slabs, the ratio is en-
hanced for distance in the range 10–100 nm, reduced
for 100–1000 nm, and enhanced again at larger dis-
tances for the specific orientations where 𝑏1 and 𝑏2
are parallel to the interface. The inset shows details
of the curves for the distance ranging from 4µm to
10µm. Interestingly, one can find that the Casimir
force transits from attractive to repulsive at 𝑎 ≈ 6µm
for 𝑏1 = 𝑏2 perpendicular to the interface. The os-
cillation of 𝐹 (𝑎)/𝐹0(𝑎) in the interval 10–1000 nm is
a generic feature of Casimir force between dielectric
thin films: when the distance is much greater than the
thickness of dielectric films, i.e., 𝑎 > 100 nm in this
case, the large-wavelength virtual photon can pene-
trate into the dielectric films, which makes the Fresnel
matrix significantly reduce and the ratio 𝐹 (𝑎)/𝐹0(𝑎)
decrease correspondingly. For the orientations 𝑏1, 𝑏2
parallel to the interface, the chiral anomaly induced
screening of virtual photon makes the Casimir attrac-
tion enhanced as demonstrated for the semi-infinite
thickness situation.

The Casimir repulsion that appears in the inset
of Fig. 5 is another influence of chiral anomaly if the
separation of Weyl nodes is perpendicular to the inter-
face, i.e., 𝑏1 = 𝑏2 ⊥ 𝑥𝑦 plane. In this case, the chiral
anomaly in WSM can induce a Hall conductivity in
the 𝑥𝑦 plane,[16] 𝜎𝑥𝑦 = 𝑒2𝑏/2𝜋2~, which modifies the
reflection of virtual photon on the surface of WSM
by introducing an off-diagonal term. For the normal
incidence in the imaginary frequency representation,
𝑘𝑥 = 𝑘𝑦 = 0, the reflection matrices has the following
analytic form for the 𝑏1 = 𝑏2 ⊥ 𝑥𝑦 plane,

R(1)
Cart(𝑖𝜁) = R(2)

Cart(𝑖𝜁) =

(︂
𝑟𝑥𝑥 𝑟𝑥𝑦
−𝑟𝑥𝑦 𝑟𝑦𝑦

)︂
, (12)
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where

𝑟𝑦𝑦 = 𝑟𝑥𝑥,

𝑟𝑥𝑥 = − (𝜀2 − 1)𝜁2 + 𝜂2

(𝜀− 1)2𝜁2 + 𝜂2
+
∑︁
±

𝜆± coth(𝜆±𝑑)

(1 − 𝜀)𝜁 ± 𝑖𝜂
, (13)

𝑟𝑥𝑦 =
2𝜂𝜁

(𝜀− 1)2𝜁2 + 𝜂2
+
∑︁
±

±𝑖𝜆± coth(𝜆±𝑑)

(1 − 𝜀)𝜁 ± 𝑖𝜂
, (14)

and 𝜆± =
√︀

𝜁(𝜀𝜁∓𝑖𝜂) are the two eigenvalues of the
Berreman matrix corresponding to the EM waves with
opposite circular polarizabilities. In the thin film
limit, 𝑑 → 0, the reflection matrix is dominated by the
terms proportional to 𝜆± coth(𝜆±𝑑) ≈ 1/𝑑 → ∞. Fur-
thermore, 𝑟𝑥𝑦/𝑟𝑥𝑥 → 𝜂/(1 − 𝜀)𝜁 ≫ 1 for sufficiently
small imaginary frequency 𝜁. In the large distance
limit, 𝑎 → ∞ and 𝜁 → 0, one can safely consider only
the off-diagonal terms in the reflection matrices. The
Lifshitz mode counting function in Eq. (5) simplifies
to ln(1 + 𝑒−2𝜅𝑎𝑟2𝑥𝑦)2, this term acquires a minus sign
in comparing with the conventional form, and con-
tributes to the repulsive Casimir interaction.[8]

The ratio 𝑟𝑥𝑦/𝑟𝑥𝑥 is an important index to mea-
sure the intensity of Casimir repulsion and attraction,
the arc tangent of this ratio defines the Kerr rota-
tion of EM wave reflection on the surface of WSM.
For the parameters used in this work, 𝑏 = 0.08 Å−1,
𝑑 = 20 nm, 𝜖(0) ≈ 13, and 𝜁 = 0.04eV/~ for the
virtual photon in the micrometer regime, we obtain
𝜃Kerr = arctan(𝑟𝑥𝑦/𝑟𝑥𝑥) ≈ 1, which estimates that the
Casimir repulsion is weak in the micrometer regime.

Until now, the unique experiment, demonstrating
that the Casimir–Lifshitz energy stored in the vac-
uum could be anisotropic, was carried out by Somers
et al. in the liquid crystal-birefringent material sys-
tem via measuring the Casimir–Lifshitz torque in the
nanometer regime.[6] In this work, we propose another
scheme to detect the anisotropic Casimir–Lifshitz en-
ergy by measuring the anisotropic Casimir force be-
tween WSM slabs for different orientations of 𝑏1, 𝑏2
in the micrometer regime. The anisotropy of Casimir
force is significantly large in comparing with conven-
tional birefringent materials. Furthermore, the chi-
ral anomaly induced screening of virtual photons on
the surface of WSM makes the Casimir attraction en-
hanced in this regime, which makes the measurement
more feasible. For WSM thin films, in the micrometer
regime, the ratio 𝐹 (𝑎)/𝐹0(𝑎) decays to zero rapidly,
or even goes into the Casimir repulsive region when
the separations of Weyl nodes 𝑏1 = 𝑏2 are perpendic-
ular to the interface; the ratio 𝐹 (𝑎)/𝐹0(𝑎) can also
increase when 𝑏1 and 𝑏2 are parallel to the interface.
This is dramatically different from Casimir interaction
in conventional metal, dielectric, and birefringent ma-
terial. These qualitative differences can be considered
as significant evidence of chiral anomaly.
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Here we show the detailed derivation of the reflection matrices, Eqs. (7) and (8) in the main text,
by using the Berreman matrix method. The components of the electric field E and the magnetic field H

parallel to the interface, denoted as ψ(k∥, ω, z) = (Ex, Ey,Hx,Hy)
T, have the following solutions in the

vacuum,
ψ(k∥, ω, z) = WeKz

(
V⇓

V⇑

)
, (S-1)

where
W =

(
k3I k3I
Q −Q

)
, (S-2)

is consists of the four eigenvectors of the Berreman matrix and Q = iω
c

(
− c2kxky

ω2 −1 + c2k2
x

ω2

1− c2k2
y

ω2

c2kxky

ω2

)
, K =

diag(k3, k3,−k3,−k3) is the matrix consists of the four eigenvalues, k3 =
√
k2x + k2y − ω2/c2. I is a 2 × 2

identity matrix. (V⇓, V⇑)
T is a column vector, the subscripts ⇓ and ⇑ refer to the propagation directions

of EM waves, downward and upward, respectively.
In WSMs, the solution of Maxwell’s equations take the same form of Eq. (S1), however, the eigenvector

matrix W and eigenvalue matrix K take different forms for different situations. Here we consider two
different cases, (1) the separation of Weyl nodes in the Brillouin zone, 2be(j), is perpendicular to the
interface, i.e., e(1) = e(2) = ez; (2) the separation of the two Weyl nodes is parallel to the interface, i.e.,
e(j) = ex cos θj + ey sin θj (j = 1, 2). For the first case, the Berreman matrix is,

B = i


0 0 ckxky

εω
ω
c
− ck2

x

εω

0 0 −ω
c
+

ck2
y

εω
− ckxky

εω

iη − ckxky

ω
− εω

c
+ ck2

x

ω
0 0

εω
c
− ck2

y

ω
iη + ckxky

ω
0 0

 . (S-3)

The eigen equation, BW = WK, has the following solutions,

W = (W1,W2,W3,W4), (S-4)

W1 =


(−ϵω2

c2
+ k2x)p3

(kxky −
√
εω
c
p3)p3

−i
√
ε(−εω2

c2
+ k2x)λ1

−i(
√
εkxky − εω

c
p3)λ1

 ,W2 =


(−ϵω2

c2
+ k2x)p3

(kxky +
√
εω
c
p3)p3

i
√
ε(−εω2

c2
+ k2x)λ2

i(
√
εkxky + εω

c
p3)λ2

 , (S-5)

W3 =


(−ϵω2

c2
+ k2x)p3

(kxky +
√
εω
c
p3)p3

i
√
ε(−εω2

c2
+ k2x)λ3

i(
√
εkxky + εω

c
p3)λ3

 ,W4 =


(−ϵω2

c2
+ k2x)p3

(kxky −
√
εω
c
p3)p3

−i
√
ε(−εω2

c2
+ k2x)λ4

−i(
√
εkxky − εω

c
p3)λ4

 , (S-6)

where the corresponding eigenvalues λ1 = −λ4 =
√
p3[p3 − iη/

√
ε], λ2 = −λ3 =

√
p3[p3 + iη/

√
ε], p3 =√

k2
∥ − εω2/c2, ε = ε(ω) is the dielectric function of WSM. The eigenvalue matrix,

K = diag(λ1, λ2, λ3, λ4). (S-7)
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For the second case, the Berreman matrix is,

B(j) =


η ckx

εω
sin θj −η ckx

εω
sin θj i ckxky

εω
iω
c
− i ck

2
x

ϵω

η cky

εω
sin θj −η cky

εω
sin θj −iω

c
+ i

ck2
y

ϵω
−i ckxky

εω

−i ckxky

ω
− iη

2c
εω

sin θj cos θj −i εω
c
+ i ck

2
x

ω
+ iη

2c
εω

cos2 θj η cky

εω
cos θj −η ckx

εω
cos θj

i εω
c
− i

ck2
y

ω
− iη

2c
εω

sin2 θj i ckxky

ω
+ iη

2c
εω

sin θj cos θj η cky

εω
sin θj −η ckx

εω
sin θj

 . (S-8)

The eigen equation, B(j)W(j) = W(j)K(j), has the following solutions,

W(j) =
(
W

(j)
1 ,W

(j)
2 ,W

(j)
3 ,W

(j)
4

)
, (S-9)

W
(j)
1 =


i[η(η + δ(j)) + 2εk2y]

ω
c

sin θj + i[λ
(j)
1 (η + δ(j)) + 2εω

c
ky cos θj ]kx

−i[η(η + δ(j)) + 2εk2x]
ω
c

cos θj + i[λ
(j)
1 (η + δ(j))− 2εω

c
kx sin θj ]ky

[η(η + δ(j)) + 2εk2x]λ
(j)
1 cos θj + ε[ω

c
(η + δ(j)) + 2λ

(j)
1 kx sin θj ]ky

[η(η + δ(j)) + 2εk2y]λ
(j)
1 sin θj − ε[ω

c
(η + δ(j))− 2λ

(j)
1 ky cos θj ]kx

 , (S-10)

W
(j)
2 =


i[η(η − δ(j)) + 2εk2y]

ω
c

sin θj + i[λ
(j)
2 (η − δ(j)) + 2εω

c
ky cos θj ]kx

−i[η(η − δ(j)) + 2εk2x]
ω
c

cos θj + i[λ
(j)
2 (η − δ(j))− 2εω

c
kx sin θj ]ky

[η(η − δ(j)) + 2εk2x]λ
(j)
2 cos θj + ε[ω

c
(η − δ(j)) + 2λ

(j)
2 kx sin θj ]ky

[η(η − δ(j)) + 2εk2y]λ
(j)
2 sin θj − ε[ω

c
(η − δ(j))− 2λ

(j)
2 ky cos θj ]kx

 , (S-11)

W
(j)
3 =


i[η(η − δ(j)) + 2εk2y]

ω
c

sin θj + i[λ
(j)
3 (η − δ(j)) + 2εω

c
ky cos θj ]kx

−i[η(η − δ(j)) + 2εk2x]
ω
c

cos θj + i[λ
(j)
3 (η − δ(j))− 2εω

c
kx sin θj ]ky

[η(η − δ(j)) + 2εk2x]λ
(j)
3 cos θj + ε[ω

c
(η − δ(j)) + 2λ

(j)
3 kx sin θj ]ky

[η(η − δ(j)) + 2εk2y]λ
(j)
3 sin θj − ε[ω

c
(η − δ(j))− 2λ

(j)
3 ky cos θj ]kx

 , (S-12)

W
(j)
4 =


i[η(η + δ(j)) + 2εk2y]

ω
c

sin θj + i[λ
(j)
4 (η + δ(j)) + 2εω

c
ky cos θj ]kx

−i[η(η + δ(j)) + 2εk2x]
ω
c

cos θj + i[λ
(j)
4 (η + δ(j))− 2εω

c
kx sin θj ]ky

[η(η + δ(j)) + 2εk2x]λ
(j)
4 cos θj + ε[ω

c
(η + δ(j)) + 2λ

(j)
4 kx sin θj ]ky

[η(η + δ(j)) + 2εk2y]λ
(j)
4 sin θj − ε[ω

c
(η + δ(j))− 2λ

(j)
4 ky cos θj ]kx

 . (S-13)

The corresponding eigenvalues are, λ(j)
1 = −λ(j)

4 =
√
p23 +

η
2ε
(η + δ(j)), λ(j)

2 = −λ(j)
3 =

√
p23 +

η
2ε
(η − δ(j)),

δ(j) =
√
η2 + 4ε (kx cos θj + ky sin θj)2. The eigenvalue matrix for the j-th WSM slab is given by,

K(j) = diag
(
λ
(j)
1 , λ

(j)
2 , λ

(j)
3 , λ

(j)
4

)
. (S-14)

For finite thickness WSMs, there are two boundaries, the wave function ψ is continuous on the
boundaries. For the first WSM, these boundary conditions are,

W
(

0

E
[inj]
⇑

)
+W

(
E

[ref]
⇓
0

)
= W(1)

(
E

[WSM]
⇓

E
[WSM]
⇑

)
, (S-15)

W(1)eK
(1)d

(
E

[WSM]
⇓

E
[WSM]
⇑

)
= W

(
0

E
[tran]
⇑

)
(S-16)

where E[inj]
⇑ and E[ref]

⇓ denote the injection and the reflection EM wave from the vacuum to the first WSM,
(E

[WSM]
⇓ , E

[WSM]
⇑ )T is the EM wave in the first WSM, E[tran]

⇑ is the transmission EM wave. The reflection
matrix is defined as,

E
[ref]
⇓ = R(1)

CartE
[inj]
⇑ . (S-17)

Solving Eqs. (S15) and (S16), we get Eq. (7) in the main text. Utilizing the same method, we can get
Eq. (8).
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