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Superconductivity, Pair Density Wave, and Néel Order in Cuprates ∗
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We investigate in underdoped cuprates possible coexistence of the superconducting order at zero momentum and
pair density wave (PDW) at momentum 𝑄 = (𝜋, 𝜋) in the presence of a Néel order. By symmetry, the d-wave
uniform singlet pairing 𝑑𝑆0 can coexist with the d-wave triplet PDW 𝑑𝑇𝑄, and the p-wave singlet PDW 𝑝𝑆𝑄 can
coexist with the p-wave uniform triplet 𝑝𝑇0. At half filling, we find that the novel 𝑝𝑆𝑄+𝑝𝑇0 state is energetically
more favorable than the 𝑑𝑆0 + 𝑑𝑇𝑄 state. At finite doping, however, the 𝑑𝑆0 + 𝑑𝑇𝑄 state is more favorable. In
both types of states, the variational triplet parameters 𝑑𝑇𝑄 and 𝑝𝑇0 are of secondary significance. Our results
point to a fully symmetric Z2 quantum spin liquid with spinon Fermi surface in proximity to the Néel order at
zero doping, which may not be adiabatically connected to the d-wave singlet superconductivity at finite doping
with intertwining d-wave triplet PDW fluctuations and spin moment fluctuations. The results are obtained by
variational quantum Monte Carlo simulations.
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The mechanism of high-temperature superconduc-
tivity in cuprates remains to be an exciting research
topic. One of the interesting proposals is Anderson’s
resonating valence bond (RVB) state.[1] A suitable
Hamiltonian describing such a system is the one-band
𝑡–𝐽 model.[2] In this model, while the parent com-
pound at half filling is automatically a Mott insulator
for the charge degrees of freedom, the spin sector is
much more intriguing. The RVB state may be viewed
as a linear combination of configurations of the cover-
ing of spin singlets, a quantum spin liquid (QSL) with
fractional spinon excitations. Chemical doping intro-
duces mobile holes, leaving room for spin singlets to re-
locate and hence making the system a superconductor
immediately.[3] Initially, an s-wave RVB state is pro-
posed in view of the experimental robustness of super-
conductivity against impurity scattering,[4] whereas it
is found later that the d-wave RVB state is energet-
ically better,[5,6] and can actually be robust against
impurities in doped Mott insulators because of charge
renormalization.[7]

It should be pointed out that in the undoped limit,
however, there is a local charge-𝑆𝑈(2) symmetry fol-
lowing from the charge neutrality.[8] This symmetry
relates various forms of RVB states. For example, the
RVB state with a 𝜋-flux in the spinon hopping around
a plaquette may be mapped to a state with d-wave
pairing, etc. Such states are said to be gauge equiva-

lent and describe the same spin liquid upon projection
to the physical Hilbert space. The projective symme-
try group (PSG) has been developed[9,10] to classify
all possible and physically distinct spin liquids. It is
then interesting to ask which type of spin liquid is
adiabatically connected to the d-wave pairing at finite
doping, although the d-wave RVB state is widely be-
lieved to be the candidate. This becomes even more
challenging when the ground state develops Néel or-
der so that spin- 12 spinons would have been confined
to form spin-1 magnons. However, inelastic neutron
scattering experiments show that the spin excitations
away from the Néel vector are broadened significantly,
well beyond the linear spin-wave description.[11] A re-
cent interesting proposal is that even in the presence
of Néel order, the spinons may be deconfined in a par-
tial region of the Brillouin zone,[12−14] although the
same phenomenon could also be understood in terms
of magnon-magnon scattering.[14−16] It is therefore in-
teresting to consider spinon states on the background
of the Néel order.

The charge-𝑆𝑈(2) symmetry is broken at finite
doping. The Néel order is weakened but persists at
small finite doping. The effect of this order on super-
conductivity is also an intriguing topic. In this case,
the spin-𝑆𝑈(2) symmetry is broken down to 𝑂(2).
As a result, there is no longer sharp distinction be-
tween spin-singlet and spin-triplet Cooper pairings,
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and there is room for coexistence,[17,18] although the
relative weight is not dictated by symmetry. There
is a residual point group 𝐶4 (with respect to a site),
which leaves the spin moment invariant in the Néel
state. This symmetry dictates what kinds of singlet
and triplet could coexist. There are three irreducible
representations for the 𝐶4 group, namely, the 1D 𝐴
and 𝐵 representations, and the 2D 𝐸 representation.
Since the completely symmetric 𝐴 representation is
not a favorable pairing symmetry we will ignore it
henceforth. The 𝐵 representation transforms as d-
wave. The doubly degenerate 𝐸 representation trans-
forms as p-wave. Therefore, the singlet and triplet
should transform under 𝐶4 identically either as d-wave
or as p-wave. These possibilities are illustrated in
Fig. 1. In the first case, the d-wave singlet Cooper
pair at momentum q = 0 (a), can coexist with a d-
wave triplet at momentum 𝑄 ≡ (𝜋, 𝜋) (b). The latter
is a pair density wave (PDW), namely, the Cooper
pairing at the center-of-mass momentum of 𝑄. In the
second case, the 𝑝+ 𝑖𝑝′-wave singlet PDW at momen-
tum q = 𝑄 (c) can coexist with the same 𝑝+ 𝑖𝑝′-wave
but triplet SC state (d). The four types of states are
denoted in a self-explaining manner as 𝑑𝑆0, 𝑑𝑇𝑄, 𝑝𝑆𝑄

and 𝑝𝑇0. Interestingly, in the PDW states, an elec-
tron at momentum 𝑘1 = 𝑘+𝑄 pairs up with another
at 𝑘2 = −𝑘. When 𝑘 is on the so-called umklapp
surface (US), so will be both 𝑘1 and 𝑘2, related by
mirror symmetry. The scattering of such a Cooper
pair across the US was argued to be the key mecha-
nism that could generate not only the single-particle
gap but also two-particle gap near the antinodes and
hence the pseudogap.[19] On the other hand, the chiral
𝑝𝑇0 state was recently proposed[17] to be present on
the background of the Néel order, in an effort to ex-
plain in the underdoped regime the opening of a mini
gap in the quasiparticle excitations along the other-
wise gapless (nodal) direction of the 𝑑𝑆0 state.[20−24]

Remarkably, if this were the case, the cuprate would
be topologically nontrivial because of the chiral 𝑝+ 𝑖𝑝′

pairing.[25,26]

We are therefore motivated to investigate possi-
ble coexistence of superconducting (SC) order at zero
momentum and PDW at momentum 𝑄 in the pres-
ence of a Néel order. We use the variational quantum
Monte Carlo (VQMC) to treat the strong correlation
effects. In the undoped case, we find that the novel
𝑝𝑆𝑄 + 𝑝𝑇0 state is energetically more favorable than
the 𝑑𝑆0 + 𝑑𝑇𝑄 state. On its own the 𝑝𝑆𝑄 state is a
fully symmetric Z2 QSL with spinon Fermi surfaces,
but it is unstable toward Néel ordering. At finite low
doping, however, the 𝑑𝑆0 + 𝑑𝑇𝑄 state is more favor-
able. Our results point to a novel QSL in proximity
to the Néel order at zero doping, which is not adia-
batically connected to the d-wave singlet SC at finite
doping with intertwining d-wave triplet PDW fluctu-

ations and spin moment fluctuations.
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Fig. 1. Illustration of the pairing function Δ𝑖𝑗 on nearest-
neighbor bonds, in the d-wave case [(a) and (b)], and the
p-wave case [(c) and (d)], all on the background of a Néel
order. The spin moments are opposite on the filled and
open circles. For singlet pairing, Δ𝑖𝑗 is symmetric under
exchange of 𝑖 and 𝑗, hence its value is denoted on headless
bonds in (a) and (c). For triplet pairing, the function is
antisymmetric under the exchange of 𝑖 and 𝑗, hence its
value is denoted by colored text on colored arrows in (b)
and (d). An arrow starts at 𝑖 and points to 𝑗.

Model and method.—We begin with the 𝑡–𝐽 model
on the square lattice, described by the Hamiltonian

𝐻 =−
∑︁

𝑛=1,2;𝜎

∑︁
⟨𝑖𝑗⟩∈𝑁𝑛

𝑡𝑛𝑃 (𝑐
†
𝑖𝜎𝑐𝑗𝜎 +H.c.)𝑃

+ 𝐽
∑︁

⟨𝑖𝑗⟩∈𝑁1

(︂
𝑆𝑖 · 𝑆𝑗 −

1

4
𝑃𝑛𝑖𝑛𝑗𝑃

)︂
. (1)

Here 𝜎 is the spin polarization, 𝑁1,2 denote the first-
and second-neighbor bonds with hopping integrals
𝑡1 = 𝑡 and 𝑡2 = 𝑡′, respectively; 𝑐𝑖𝜎 is the electron an-
nihilation operator, 𝐽 is the Heisenberg spin exchange,
𝑆𝑖 is the local spin, and 𝑛𝑖 is the local density. The
operator 𝑃 = Π𝑖(1 − 𝑛𝑖↑𝑛𝑖↓) projects away any dou-
ble occupancy. As typical parameters for cuprates,
we take (𝑡, 𝑡′, 𝐽) = (0.4,−0.12, 0.13) eV.[3] At half fill-
ing, the charge degrees of freedom are frozen, and the
model reduces to the Heisenberg model. Upon hole
doping, the doped holes may move without causing
double occupancy, leading to metallicity and super-
conductivity.

The Hamiltonian includes infinitely strong corre-
lations, due to the fact that no double-occupancy is
allowed. In this work, we tackle the problem by varia-
tional quantum Monte Carlo (VQMC), which takes
care of the no-double occupancy condition exactly.
This method has been used extensively previously
for the same system,[5,27−32] yielding considerable in-
sights into the Néel state at half filling and the uniform
d-wave SC state at finite doping. More recently, the
VQMC has been extended to deal with essentially un-
limited number of variational parameters.[33−35] Here
we will go beyond the uniform d-wave ansatz yet limit
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ourselves to a handful of motivated parameters as we
now describe. For later convenience, we introduce the
Nambu basis 𝜓†

𝑖 = (𝑐†𝑖↑, 𝑐𝑖↓). The variational Hamil-
tonian can be written as

𝐻v =
∑︁

⟨𝑖𝑗⟩∈𝑁1

(𝜓†
𝑖𝑈𝑖𝑗𝜓𝑗 +H.c.)−

∑︁
𝑖

𝜓†
𝑖 (𝜇𝑧𝜂𝑖 + 𝜇𝜏3)𝜓𝑖

−
∑︁

⟨𝑖𝑗⟩∈𝑁2

(𝜓†
𝑖 𝑡2𝑣𝜏3𝜓𝑗 +H.c.). (2)

Henceforth 𝜏1,2,3 are Pauli matrices in the Nambu (or
particle-hole) basis. The second-neighbor hopping 𝑡2𝑣,
the chemical potential 𝜇 and the exchange field 𝜇𝑧

are all variational parameters, and 𝜂𝑖 = ±1 is a stag-
gered sign for A/B sublattice. Furthermore, on the
𝑁1 bonds,

𝑈𝑖𝑗 = −𝑡1𝑣𝜏3 +Δ𝑖𝑗𝜏
+ +Δ*

𝑗𝑖𝜏
−. (3)

Henceforth we fix 𝑡1𝑣 = 1 without loss of generality
(since the only role of 𝐻v is to construct the trial
wavefunction, see below), 𝜏± = (𝜏1 ± 𝑖𝜏2)/2, and Δ𝑖𝑗

is the real-space pairing function on a directed bond
⟨𝑖𝑗⟩: For 𝑏 = 𝑟𝑗 − 𝑟𝑖 = (𝑏𝑥, 𝑏𝑦),

Δ𝑖𝑗 = (𝑏2𝑥 − 𝑏2𝑦)(𝑆0 + 𝑇𝑄𝜂𝑖) + (𝑏𝑥 + 𝑖𝑏𝑦)(𝑆𝑄𝜂𝑖 + 𝑇0),

where 𝑆0 (𝑇𝑄) is the singlet (triplet) part of the d-
wave pairing, and 𝑆𝑄 (𝑇0) is the singlet (triplet) part
of the chiral p-wave pairing. Note we assumed the
triplets all have their 𝑑-vectors along 𝑧, the direction
of the Néel moment. In this way, the total spin of a
triplet Cooper pair is orthogonal to the Néel moment,
a most favorable situation for triplets to develop on
the Néel order induced by 𝜇𝑧. On the other hand, the
momentum 𝑄 = (𝜋, 𝜋) in the PDW state is obvious
from the staggered sign 𝜂𝑖 over the lattice. The four
cases of the pairing function Δ𝑖𝑗 , when only one of
the four coefficients in it is nonzero, are illustrated in
Fig. 1. To summarize, we consider the set of varia-
tional parameters

𝑥 = {𝜇, 𝜇𝑧, 𝑡2𝑣, 𝑆0, 𝑇𝑄}, d-wave case,

𝑥 = {𝜇, 𝜇𝑧, 𝑡2𝑣, 𝑆𝑄, 𝑇0}, p-wave case. (4)

Since the d-wave and p-wave states belong to different
irreducible representations of the 𝐶4 group, we con-
sider them separately. We assume that all parameters
in 𝑥 are real, as this turns out to gain energy better.

The normalized trial ground state is constructed as
|𝐺⟩ = 𝑃 |𝜓0⟩/

√︀
⟨𝜓0|𝑃 |𝜓0⟩, where |𝜓0⟩ is the ground

state of the free variational Hamiltonian 𝐻v (which
depends on the parameter set 𝑥), in the canonical
ensemble with a definite total number of electrons,
𝑁e = 𝑁(1− 𝛿), on the lattice. Here 𝑁 is the number
of sites and 𝛿 is the hole doping level. We use the
standard Monte Carlo to calculate the average energy
density 𝐸 and the Néel order 𝑚, 𝐸 = ⟨𝐺|𝐻|𝐺⟩/𝑁 ,

𝑚 =
∑︀

𝑖 𝜂𝑖⟨𝐺𝑆𝑧
𝑖 |𝐺⟩/𝑁 . We optimize the parame-

ter set 𝑥 automatically by adapting to our case the
method proposed previously.[33−35]

Variational results at zero doping.—In Fig. 2 we
show the energy (per site) in the two types of varia-
tional states, versus the inverse lattice size. In both
the cases, the parameter 𝜇𝑧 is finite, leading to Néel
order, see Fig. 4(b) at zero doping. The best en-
ergy of the d-wave state is about 𝐸 = −1.1645𝐽 ,
or ⟨𝑆𝑖 · 𝑆𝑗⟩ = −0.3322𝐽 on 𝑁1 bonds, consistent
with that reported in the literature.[3,5,32,36,37] In-
terestingly, the optimized energy is even lower in
the p-wave state, 𝐸 = −1.1660𝐽 . Translated as
⟨𝑆𝑖 ·𝑆𝑗⟩ = −0.3330𝐽 , the energy is so far the best us-
ing fermionic VQMC, and is fairly close to the results
of bosonic VQMC (−0.3344𝐽 [38,39]), Green’s function
QMC (−0.3346𝐽 [40]) and stochastic series expansion
QMC (−0.3347𝐽 [41]). The singlet part (𝑑𝑆0 or 𝑝𝑆𝑄)
is essential to gain energy. It is surprising that the
more favorable 𝑝𝑆𝑄 singlet has a center-of-mass mo-
mentum 𝑄, in contrast to the usual 𝑑𝑆0 state widely
assumed in previous fermionic VQMC. Therefore, our
results point to a novel type of ground state with p-
wave singlet PDW. An interesting question is whether
such a pairing could persist at finite doping. We will
come back to this point later.
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Fig. 2. Scaling of the optimized energy per site versus
1/𝐿, with 𝐿 =

√
𝑁 the linear lattice size, in the 𝑑𝑆0+𝑑𝑇𝑄

state (open circles) and the 𝑝𝑆𝑄 + 𝑝𝑇0 state (open trian-
gles). In both the cases the Néel order is included and
optimized simultaneously.

A Z2 QSL with nested spinon Fermi surfaces and
a pair of Dirac nodes.—At zero doping, we find that
if we switch off the Néel order (by setting 𝜇𝑧 = 0), the
optimized energy is 𝐸 = −1.1466𝐽 for the 𝑝𝑆𝑄 state,
and 𝐸 = −1.1406𝐽 for the 𝑑𝑆0 state. The 𝑝𝑆𝑄 state
is still better. The energy difference is far beyond sta-
tistical error. Furthermore, we can set 𝜇 = 𝑡2𝑣 = 0
without affecting the optimized energy. In this case
the variational Hamiltonian is composed of the 𝑈𝑖𝑗

terms only, in Eq. (2). We take a closer look into such
a 𝑝𝑆𝑄 state to understand why it is better than 𝑑𝑆0,
in terms of the PSG theory.[9,10]

There are staggered signs in Δ𝑖𝑗 or in 𝑈𝑖𝑗 in the
𝑝𝑆𝑄 state, see Fig. 1(c). This can actually be gauged
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away, given the exact charge neutrality (at zero dop-
ing) and hence local charge-𝑆𝑈(2) gauge invariance in
VQMC. After the gauge transformation,

𝑈𝑖𝑗 → 𝑉𝑖𝑈𝑖𝑗𝑉
†
𝑗 , 𝑉𝑖 = 𝑒𝑖𝑄·𝑟𝑖𝜏3/2, (5)

where 𝑟𝑖 = (𝑥𝑖, 𝑦𝑖) is the coordinate vector, we obtain
a uniform ansatz:

𝑈𝑖,𝑖+�̂� = −𝑖𝜏0 + 𝑆𝑄𝜏2, 𝑈𝑖,𝑖+𝑦 = −𝑖𝜏0 + 𝑆𝑄𝜏1,
(6)

with 𝑈𝑗𝑖 = 𝑈 †
𝑖𝑗 . The invariant gauge group (IGG) of

this state is Z2, so all but Z2 gauge fluctuations are
gapped.[9,10] Moreover, the PSG leaving the ansatz in-
variant is composed of the following conventional sym-
metry group elements 𝑔 and the associated local gauge
transformation 𝑉𝑔:

𝑔 = 𝑃𝑥, 𝑃𝑦, 𝑃𝑑, 𝑇.

𝑉𝑔 = (−)𝑥𝑖𝑖𝜏1, (−)𝑦𝑖𝑖𝜏2,
𝑖√
2
(𝜏1+𝜏2), (−)𝑥𝑖+𝑦𝑖 .

(7)
In the above, 𝑃x,y,d are mirrors sending 𝑥 → −𝑥,
𝑦 → −𝑦 and 𝑥 ↔ 𝑦, respectively, and 𝑇 is time re-
versal which acts on 𝑈𝑖𝑗 as 𝑖𝜏2𝑈*

𝑖𝑗(−𝑖𝜏2) = −𝑈𝑖𝑗 .[9,10]

This PSG can be labeled as Z2A𝑥𝑦(12)𝑛,[9,10] not real-
ized in previous VQMC or self-consistent MF studies.
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Fig. 3. Spinon dispersion, for 𝑆𝑄 = 1.7 as an illustration.
The thick red lines are the Fermi pockets and the arrows
indicate a pair of Dirac nodes at the Fermi level.

Substituting the transformed ansatz Eq. (6) into
Eq. (2), we obtain the spinon dispersion 𝐸𝑘 =
2(sin 𝑘𝑥 + sin 𝑘𝑦) ± 2|𝑆𝑄|

√︀
cos2 𝑘𝑥 + cos2 𝑘𝑦. This is

gapless, and in fact there are two Fermi pockets en-
closing ±𝑄/2, see Fig. 3. In addition, at the Fermi
level there are two Dirac nodes at ±(𝜋/2,−𝜋/2). Im-
portantly, the spinon Fermi surfaces and Dirac nodes
are protected by the above PSG, and this serves as an
indicator of the quantum order in such a gapless Z2

QSL.[9,10]

We now discuss the fate of the above QSL. Even if
we assume that the spinons are free from the coupling
to the massive gauge fields, residual interactions be-
tween spinons can induce an instability toward Néel
ordering in the presence of perfect nesting between
the spinon Fermi surfaces, which eventually gaps out
the spinons. We see an interesting example that the

massiveness of gauge field fluctuations in a Z2 QSL is
insufficient to guarantee its stability against magnetic
ordering.

Finite doping.—We have also performed system-
atic VQMC simulations at finite doping. In Fig. 4(a)
we show the energy versus hole doping in the various
variational states. We find that the energies in the 𝑑𝑆0

and 𝑑𝑆0+𝑑𝑇𝑄 states are degenerate within statistical
error, and so are the 𝑝𝑆𝑄 and 𝑝𝑆𝑄 + 𝑝𝑇0 states. In
contrast, the energy becomes poorer (not shown) if we
get rid of the singlet components, in both the cases.
This further enforces our view that the relevant pair-
ing states are all singlets: 𝑑𝑆0 and 𝑝𝑆𝑄. Moreover,
while in the undoped case we find that the 𝑝𝑆𝑄 (or
𝑝𝑆𝑄+𝑝𝑇0) state has lower energy, at finite doping we
find that the 𝑑𝑆0 (or 𝑑𝑆0+𝑑𝑇𝑄) state is systematically
more favorable, down to the lowest nonzero doping we
accessed. In fact, by linear interpolation the transition
between these two types of states would be at a tiny
hole doping level. We conjecture that the 𝑝𝑆𝑄 state
at zero doping is not adiabatically connected to the
𝑑𝑆0 state at finite doping.
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Fig. 4. The doping dependence of (a) energy per site and
(b) the Néel moment, in the various types of variational
states. The results are obtained in a lattice with 𝑁 = 82,
and are qualitatively robust in larger lattices.

Figure 4(b) shows the average Néel moment versus
the hole doping. We find that the energy may be de-
generate in the d-wave cases, or in the p-wave cases,
as shown in (a), the moment will differ if the triplet
component is included. For example, the Néel moment
is larger in the 𝑑𝑆0 + 𝑑𝑇𝑄 state than the 𝑑𝑆0 state,
and similarly for 𝑝𝑆𝑄+𝑝𝑇0 versus 𝑝𝑆𝑄. On the other
hand, the Néel moment is suppressed more quickly in
the d-wave cases. Taking the lower-energy 𝑑𝑆0 + 𝑑𝑇𝑄
state at finite doping, we believe the harmlessness of
the triplet component 𝑑𝑇𝑄 to the optimized energy
points to soft triplet PDW fluctuations and spin fluc-
tuations in the underdoped regime. The dominant
𝑑𝑆0 is just the d-wave singlet pairing, well perceived
in doped cuprates. The secondary 𝑑𝑇𝑄 state may be-
come important at higher energy scales (e.g., above
the superconducting transition temperature), where
the umklapp scattering of such pairs may be the key
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process to generate the pseudogap near the antinodes
in underdoped cuprates.[19] Unfortunately, this is al-
ready beyond the scope of VQMC for the ground state.

The numerical simulations were performed in
High-Performance Computing Center of Collaborative
Innovation Center of Advanced Microstructures, Nan-
jing University.
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