Chin. Phys. Lett.  2019, Vol. 36 Issue (2): 028401    DOI: 10.1088/0256-307X/36/2/028401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites
Wan-Ying Zhao1, Zhi-Liang Ku2, Li-Ping Lv3, Xian Lin1, Yong Peng2, Zuan-Ming Jin1,4**, Guo-Hong Ma1,4**, Jian-Quan Yao5
1Department of Physics, Shanghai University, Shanghai 200444
2State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070
3Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444
4STU & SIOM Joint Laboratory for Superintense Lasers and Applications, Shanghai 201210
5College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072
Cite this article:   
Wan-Ying Zhao, Zhi-Liang Ku, Li-Ping Lv et al  2019 Chin. Phys. Lett. 36 028401
Download: PDF(1220KB)   PDF(mobile)(1631KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using time-dependent terahertz spectroscopy, we investigate the role of mixed-cation and mixed-halide on the ultrafast photoconductivity dynamics of two different methylammonium (MA) lead-iodide perovskite thin films. It is found that the dynamics of conductivity after photoexcitation reveals significant correlation on the microscopy crystalline features of the samples. Our results show that mixed-cation and lead mixed-halide affect the charge carrier dynamics of the lead-iodide perovskites. In the (5-AVA)$_{0.05}$(MA)$_{0.95}$PbI$_{2.95}$Cl$_{0.05}$/spiro thin film, we observe a much weaker saturation trend of the initial photoconductivity with high excitation fluence, which is attributed to the combined effect of sequential charge carrier generation, transfer, cooling and polaron formation.
Received: 05 September 2018      Published: 22 January 2019
PACS:  84.60.Jt (Photoelectric conversion)  
  78.47.-p (Spectroscopy of solid state dynamics)  
  07.57.Ty (Infrared spectrometers, auxiliary equipment, and techniques)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11604202, 11674213, 61735010 and 51603119, the Young Eastern Scholar under Grant Nos QD2015020 and QD2016027, the Shanghai Rising-Star Program under Grant No 18QA1401700, the 'Chen Guang' Project under Grant Nos 16CG45 and 16CG46, the Shanghai Municipal Education Commission, and the Shanghai Education Development Foundation.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/2/028401       OR      https://cpl.iphy.ac.cn/Y2019/V36/I2/028401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wan-Ying Zhao
Zhi-Liang Ku
Li-Ping Lv
Xian Lin
Yong Peng
Zuan-Ming Jin
Guo-Hong Ma
Jian-Quan Yao
[1]Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[2]Manser J S, Christians J A and Kamat P V 2016 Chem. Rev. 116 12956
[3]Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
[4]Guo Z, Manser J S, Wan Y, Kamat P V and Huang L 2015 Nat. Commun. 6 7471
[5]Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science 342 344
[6]Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K and Grätzel M 2012 J. Am. Chem. Soc. 134 17396
[7]Saliba M, Matsui T, Seo J, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, and Grätzel M 2016 Energy Environ. Sci. 9 1989
[8]Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H, Seok S, Lee J and Seo J 2018 Nat. Energy 3 682
[9]Ren Y, Ding X, Wu Y, Ren Y K, Ding X H, Wu Y H, Zhu J, Hayat T, Alsaedi A, Xu Y, Li Z, Yang S and Dai S Y 2017 J. Mater. Chem. A 5 20327
[10]Ren Y, Shi X, Ding X, Zhu J, Hayat T, Alsaedi A, Li Z, Xu X, Yang S and Dai S Y 2018 Inorg. Chem. Front. 5 348
[11]Ren Y, Duan B, Xu Y, Huang Y, Li Z, Hu L, Hu L, Hayat T, Wang X, Zhu J and Dai S 2017 Sci. Chin. Mater. 60 392
[12]Lin K, Xing J, Quan L, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q and Wei Z 2018 Nature 562 245
[13]Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H and Tang J 2018 Nature 563 541
[14]Ivanovska T, Dionigi C, Mosconi E, De Angelis F, Liscio F, Morandi V and Ruani G 2017 J. Phys. Chem. Lett. 8 3081
[15]Zhu X Y and Podzorov V 2015 J. Phys. Chem. Lett. 6 4758
[16]Motta C and Sanvito S 2018 J. Phys. Chem. C 122 1361
[17]McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M and Snaith H J 2016 Science 351 151
[18]Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476
[19]Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M and Han H 2014 Science 345 295
[20]Pei Y, Zou X, Guan Y and Teng G 2016 Int. J. Photoenergy 2016 2953592
[21]Stranks S D, Eperon G E, Graneini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341
[22]Karakus M, Jensen S A, D'Angelo F, Turchinovich D, Bonn M and Canovas E 2015 J. Phys. Chem. Lett. 6 4991
[23]Ulbricht R, Hendry E, Shan J, Heinz T F and Bonn M 2011 Rev. Mod. Phys. 83 543
[24]Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764
[25]Papavassiliou G C, Pagona G, Karousis N, Mousdis G A, Koutselas I and Vassilakopoulou A 2012 J. Mater. Chem. 22 8271
[26]Qiu J, Qiu Y, Yan K, Zhong M, Mu C, Yan H and Yang S 2013 Nanoscale 5 3245
[27]Mosconi E, Amat A, Nazeeruddin M K, Grätzel M and De Angelis F 2013 J. Phys. Chem. C 117 13902
[28]Guo X, McCleese C, Kolodziej C, Samia A C, Zhao Y and Burda C 2016 Dalton Trans. 45 3806
[29]Schmuttenmaer C A 2004 Chem. Rev. 104 1759
[30]Joyce H J, Bol, J L, Davies C L, Baig S A and Johnston M B 2016 Semicond. Sci. Technol. 31 103003
[31]Ponseca Jr C S, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J and Sundstrom V 2014 J. Am. Chem. Soc. 136 5189
[32]Marchioro A, Teuscher J, Friedrich D, Kunst M, Krol R, Moehl T, Grätzel M and Moser J 2014 Nat. Photon. 8 250
[33]Yan H J, Ku Z L, Hu X F, Zhao W Y, Zhong M J, Zhu Q B, Lin X, Jin Z M and Ma G H 2018 Chin. Phys. Lett. 35 028401
[34]Zhang Z, Lin T, Xing X, Lin X, Meng X, Cheng Z, Jin Z and Ma G 2017 Appl. Phys. Lett. 110 111108
[35]Jensen S A, Mics Z, Ivanov I, Varol H S, Turchinovich D, Koppens. H L F, Bonn M and Tielrooij K J 2014 Nano Lett. 14 5839
[36]Bretschneider S A, Ivanov I, Wang H I, Miyata K, Zhu X and Bonn M 2018 Adv. Mater. 30 1707312
[37]Ponseca Jr C S, Tian Y, Sundström V and Scheblykin I G 2016 Nanotechnology 27 082001
[38]Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J and Herz L M 2014 Adv. Mater. 26 1584
[39]Johnston M B and Herz L M 2016 Acc. Chem. Res. 49 146
[40]Yan H, An B, Fan Z, Zhu X, Lin X, Jin Z and Ma G 2016 Appl. Phys. A 122 414
[41]Yang Y, Yan Y, Yang M, Choi S, Zhu K, Luther J M and Beard M C 2015 Nat. Commun. 6 7961
[42]Ghosh T, Aharon S, Etgar L and Ruhman S 2017 J. Am. Chem. Soc. 139 18262
[43]Jha A, Duan H G, Tiwari V, Nayak P K, Snaith H J, Thorwart M and Miller R D 2018 ACS Photon. 5 852
[44]Frost J M 2017 Phys. Rev. B 96 195202
[45]Sendner M, Nayak P K, Egger D A, Beck S, Müller C, Epding B, Kowalsky W, Kronik L, Snaith H J, Pucci A and Lovrinčić R 2016 Mater. Horizons 3 613
[46]Glover I I I R E and Tinkham M 1957 Phys. Rev. 108 243
[47]Jin Z, Gehrig D, Dyer-Smith C, Heilweil E J, Laquai F, Bonn M and Turchinovich D 2014 J. Phys. Chem. Lett. 5 3662
Related articles from Frontiers Journals
[1] Zihan Qu, Fei Ma, Yang Zhao, Xinbo Chu, Shiqi Yu, and Jingbi You. Updated Progresses in Perovskite Solar Cells[J]. Chin. Phys. Lett., 2021, 38(10): 028401
[2] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 028401
[3] Gen Yue, Zhen Deng, Sen Wang, Ran Xu, Xinxin Li, Ziguang Ma, Chunhua Du, Lu Wang, Yang Jiang, Haiqiang Jia, Wenxin Wang, Hong Chen. Absorption Enhancement of Silicon Solar Cell in a Positive-Intrinsic-Negative Junction[J]. Chin. Phys. Lett., 2019, 36(5): 028401
[4] Rui Wu, Jun-Ling Wang, Gang Yan, Rong Wang. Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(4): 028401
[5] Hui-Jie Yan, Zhi-Liang Ku, Xue-Feng Hu, Wan-Ying Zhao, Min-Jian Zhong, Qi-Biao Zhu, Xian Lin, Zuan-Ming Jin, Guo-Hong Ma. Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH$_{3}$NH$_{3}$PbI$_{3}$ Perovskites[J]. Chin. Phys. Lett., 2018, 35(2): 028401
[6] Jun-Ling Wang, Tian-Cheng Yi, Yong Zheng, Rui Wu, Rong Wang. Temperature-Dependent Photoluminescence Analysis of 1.0MeV Electron Irradiation-Induced Nonradiative Recombination Centers in n$^{+}$–p GaAs Middle Cell of GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(7): 028401
[7] Du-Xiang Wang, Ming-Hui Song, Jing-Feng Bi, Wen-Jun Chen, Sen-Lin Li, Guan-Zhou Liu, Ming-Yang Li, Chao-Yu Wu. Enhanced Efficiency of Metamorphic Triple Junction Solar Cells for Space Applications[J]. Chin. Phys. Lett., 2017, 34(6): 028401
[8] Yong Zheng, Tian-Cheng Yi, Jun-Ling Wang, Peng-Fei Xiao, Rong Wang. Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements[J]. Chin. Phys. Lett., 2017, 34(2): 028401
[9] Wen-Gui Wang, Li Zhu, Yu-Yan Weng, Wen Dong. TiO$_{2}$-Loaded WO$_{3}$ Composite Films for Enhancement of Photocurrent Density[J]. Chin. Phys. Lett., 2017, 34(2): 028401
[10] Jun-Na Zhang, Lei Wang, Zhun Dai, Xun Tang, You-Bo Liu, De-Ren Yang. The 18.3% Silicon Solar Cells with Nano-Structured Surface and Rear Emitter[J]. Chin. Phys. Lett., 2017, 34(2): 028401
[11] Yong Zheng, Tian-Cheng Yi, Peng-Fei Xiao, Juan Tang, Rong Wang. Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle Cells for Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2016, 33(05): 028401
[12] Talib Hussain, Hui-Qi Ye, Dong Xiao. Excess Carrier Lifetime Improvement in c-Si Solar Cells by YAG:Ce$^{3+}$-Yb$^{3+}$[J]. Chin. Phys. Lett., 2016, 33(05): 028401
[13] SUN Ding, GE Yang, XU Sheng-Zhi, ZHANG Li, LI Bao-Zhang, WANG Guang-Cai, WEI Chang-Chun, ZHAO Ying, ZHANG Xiao-Dan. Improvement of the Open Circuit Voltage of CZTSe Thin-Film Solar Cells by Surface Sulfurization Using SnS[J]. Chin. Phys. Lett., 2015, 32(12): 028401
[14] LI Li, YU Dong, WU Shi-Liang, WANG Wei, LIU Wen-Chao, WU Xiao-Shan, ZHANG Feng-Ming. Conversion Efficiency Enhancement of Multi-crystalline Si Solar Cells by Using a Micro-structured Junction[J]. Chin. Phys. Lett., 2015, 32(11): 028401
[15] WANG Fei-Long, DAI Bin, LIU Xue-Feng, SUN Yi-Ning, SUN Zhi-Bin, YU Qiang, ZHAI Guang-Jie. Containerless Heating Process of a Deeply Undercooled Metal Droplet by Electrostatic Levitation[J]. Chin. Phys. Lett., 2015, 32(11): 028401
Viewed
Full text


Abstract