Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 117201    DOI: 10.1088/0256-307X/35/11/117201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain
Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang**, Yi Zhao
College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027
Cite this article:   
Junkang Li, Yiming Qu, Siyu Zeng et al  2018 Chin. Phys. Lett. 35 117201
Download: PDF(1229KB)   PDF(mobile)(1221KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ge complementary tunneling field-effect transistors (TFETs) are fabricated with the NiGe metal source/drain (S/D) structure. The dopant segregation method is employed to form the NiGe/Ge tunneling junctions of sufficiently high Schottky barrier heights. As a result, the Ge p- and n-TFETs exhibit decent electrical properties of large ON-state current and steep sub-threshold slope ($S$ factor). Especially, $I_{\rm d}$ of 0.2 $\mu$A/μm is revealed at $V_{\rm g}-V_{\rm th}=V_{\rm d}=\pm 0.5$ V for Ge pTFETs, with the $S$ factor of 28 mV/dec at 7 K.
Received: 05 July 2018      Published: 23 October 2018
PACS:  72.80.Cw (Elemental semiconductors)  
  73.40.Gk (Tunneling)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61504120, the Zhejiang Provincial Natural Science Foundation of China under Grant No LR18F040001, and the Fundamental Research Funds for the Central Universities.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/117201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/117201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Junkang Li
Yiming Qu
Siyu Zeng
Ran Cheng
Rui Zhang
Yi Zhao
[1]Zhang R, Huang P C, Lin J C , Taoka N, Takenaka M and Takagi S 2013 IEEE Trans. Electron Devices 60 927
[2]Ma X, Zhang R, Sun J, Shi Y and Zhao Y 2015 Chin. Phys. Lett. 32 045202
[3]Zhang Y Y, Cheng R, Xie S, Xu S, Yu X, Zhang R and Zhao Y 2017 Chin. Phys. Lett. 34 108101
[4]Zheng Z, Yu X, Zhang Y, Xie M, Cheng R and Zhao Y 2018 IEEE Trans. Electron Devices 65 895
[5]Seabaugh A C and Zhang Q 2010 Proc. IEEE 98 2095
[6]Ionescu A M and Riel H 2011 Nature 479 329
[7]Zhang S, Liang R, Wang J, Tan Z and Xu J 2017 Chin. Phys. B 26 018504
[8]Luong G V, Narimani K, Tiedemann A T, Bernardy P, Trellenkamp S, Zhao Q T and Mantl S 2016 IEEE Electron Device Lett. 37 950
[9]Sang W K, Kim J H, Liu T J K, Choi W Y and Park B G 2016 IEEE Trans. Electron Devices 63 1774
[10]Huang R, Huang Q, Chen S, Wu C, Wang J, An X and Wang Y 2014 Nanotechnology 25 505201
[11]Leonelli D, Vandooren A, Rooyackers R, Verhulst A S, Gendt S D, Heyns M M and Guido G 2010 Jpn. J. Appl. Phys. 49 04DC10
[12]Fischer I A, Bakibillah A S M, Golve M, Hahnel D, Isemann H, Kottantharayil A and Oehme M 2013 IEEE Electron Device Lett. 34 154
[13]Choi W Y, Park B G, Lee J D and Liu T J K 2007 IEEE Electron Device Lett. 28 743
[14]Liu Y, He J, Chan M, Du C X, Ye Y, Zhao W, Wu W, Deng W L and Wang W P 2014 Chin. Phys. B 23 097102
[15]Saraswat K C, Chi O C, Mohan T K, Nayfeh A and Mcintyre P 2005 Microelectron. Eng. 80 15
[16]Trumbore F A 1960 Bell Syst. Tech. J. 39 205
[17]Chroneos A and Bracht H 2014 Appl. Phys. Rev. 1 011301
[18]Bagga N, Kumar A, Bhattacharjee A and Dasgupta S 2017 Superlattices Microstruct. 109 545
[19]Toriumi A, Tabata T, Lee C H, Nishimura T, Kita K and Nagashio K 2009 Microelectron. Eng. 86 1571
[20]Li Z, An X, Li M, Yun Q, Lin M, Li M, Zhang X and Huang R 2012 IEEE Electron Device Lett. 33 1687
[21]Mueller M, Zhao Q T, Urban C, Sandow C, Buca D, Lenk S, Estévez S and Mantl S 2008 Mater. Sci. & Eng. B 154-155 168
[22]Chen C W, Tzeng J Y, Chung C T, Chien H P, Chien C H, Luo G L, Wang P Y and Tsui B Y 2013 IEEE Electron Device Lett. 35 6
[23]An X, Fan C H, Huang R and Zhang X 2009 Chin. Phys. Lett. 26 087304
[24]Zhang R, Tang X, Yu X, Li J and Zhao Y 2016 IEEE Electron Device Lett. 37 831
[25]Lee M H, Lin J C, Wei Y T, Chen C W, Tu W H, Zhuang H K and Tang M 2013 Tech. Dig.-Int. Electron. Devices Meet. (San Francisco Am. 3–5 December 2013) p 4.5.1
[26]Mookerjea S, Krishnan R, Datta S and Narayanan V 2009 IEEE Electron Device Lett. 30 1102
[27]Yang Y, Han G, Guo P, Wang W, Gong X, Wang L, Low K L and Yeo Y C 2013 IEEE Trans. Electron Devices 60 4048
[28]Sajjad R N, Chern W, Hoyt J L and Antoniadis D A 2016 IEEE Trans. Electron Devices 63 4380
[29]Jiang Z, Zhuang Y Q, Li C, Wang P and Liu Y Q 2016 Chin. Phys. B 25 027701
[30]Zhang R, Huang P C, Lin J C, Takenaka M and Takagi S 2012 Tech. Dig.-Int. Electron. Devices Meet. (San Francisco Am. 3–5 December 2012) p 16.1.1
[31]Blaeser S, Glass S, Schulte-Braucks C, Narimani K, Driesch N V D, Wirths S, Tiedemann A T, Trellenkamp S, Buca D, Zhao Q T and Mantl S 2016 Tech. Dig.-Int. Electron. Devices Meet. (San Francisco Am. 3–5 December 2016) p 22.3.1
[32]Yang Y, Su S, Guo P and Wang W 2012 Tech. Dig.-Int. Electron. Devices Meet. (San Francisco Am. 3–5 December 2012) p 16.3.1
[33]Kazazis D, Jannaty P, Zaslavsky A, Royer C L, Tabone C, Clavelier L and Cristoloveanu S 2009 Appl. Phys. Lett. 94 263508
Related articles from Frontiers Journals
[1] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 117201
[2] Gen Yue, Zhen Deng, Sen Wang, Ran Xu, Xinxin Li, Ziguang Ma, Chunhua Du, Lu Wang, Yang Jiang, Haiqiang Jia, Wenxin Wang, Hong Chen. Absorption Enhancement of Silicon Solar Cell in a Positive-Intrinsic-Negative Junction[J]. Chin. Phys. Lett., 2019, 36(5): 117201
[3] Filippov V. V., Mitsuk S.V.. Modelling Magnetoresistance Effect in Limited Anisotropic Semiconductors[J]. Chin. Phys. Lett., 2017, 34(7): 117201
[4] FILIPPOV V. V., VLASOV A. N.. Express Methods for Measurement of Electroconductivity of Semiconductor Layered Crystal[J]. Chin. Phys. Lett., 2015, 32(11): 117201
[5] MA Xue-Zhi, ZHANG Rui, SUN Jia-Bao, SHI Yi, ZHAO Yi. Reduction of Reactive-Ion Etching-Induced Ge Surface Roughness by SF6/CF4 Cyclic Etching for Ge Fin Fabrication[J]. Chin. Phys. Lett., 2015, 32(4): 117201
[6] YUAN Heng, ZHANG Ji-Xing, ZHANG Chen, ZHANG Ning, XU Li-Xia, DING Ming, Patrick J. Clarke. Low Gate Voltage Operated Multi-emitter-dot H+ Ion-Sensitive Gated Lateral Bipolar Junction Transistor[J]. Chin. Phys. Lett., 2015, 32(02): 117201
[7] WANG Hong-Juan, HAN Gen-Quan, LIU Yan, YAN Jing, ZHANG Chun-Fu, ZHANG Jin-Cheng, HAO Yue. Germanium PMOSFETs with Low-Temperature Si2H6 Passivation Featuring High Hole Mobility and Superior Negative Bias Temperature Instability[J]. Chin. Phys. Lett., 2014, 31(05): 117201
[8] ZHANG Li-Ning, MEI Jin-He, ZHANG Xiang-Yu, TAO Jin, HU Yue, HE Jin, CHAN Mansun. A Comparative Study of Ballistic Transport Models for Nanowire MOSFETs[J]. Chin. Phys. Lett., 2013, 30(11): 117201
[9] DENG Ning, TANG Jian-Shi, ZHANG Lei, ZHANG Shu-Chao, CHEN Pei-Yi. Spin Injection from Ferromagnetic Metal Directly into Non-Magnetic Semiconductor under Different Injection Currents[J]. Chin. Phys. Lett., 2010, 27(9): 117201
[10] XU Yue, YAN Feng, CHEN Dun-Jun, SHI Yi, WANG Yong-Gang, LI Zhi-Guo, YANG Fan, WANG Jos-Hua, LIN Peter, CHANG Jian-Guang. Improved Programming Efficiency through Additional Boron Implantation at the Active Area Edge in 90nm Localized Charge-Trapping Non-volatile Memory[J]. Chin. Phys. Lett., 2010, 27(6): 117201
[11] JIANG Ruolian, LIU Jianlin, ZHENG Youdou*, ZHENG Guozhen*, WEI Yayi*, SHEN Xuechu*. High Hole Mobility Si/Sil-xGex/Si Heterostructure[J]. Chin. Phys. Lett., 1994, 11(2): 117201
[12] LI Jianming. NOVEL SEMICONDUCTOR SUBSTRATE FO-D BY HYDROGEN ION IMPLANTATION INTO SILICON [J]. Chin. Phys. Lett., 1989, 6(10): 117201
Viewed
Full text


Abstract