Chin. Phys. Lett.  2018, Vol. 35 Issue (10): 104205    DOI: 10.1088/0256-307X/35/10/104205
Effects of Metal Absorber Thermal Conductivity on Clear Plastic Laser Transmission Welding
Min-Qiu Liu1, De-Qin Ouyang3, Chun-Bo Li1,3, Hui-Bin Sun2, Shuang-Chen Ruan1**
1Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060
2College of Physics Science and Technology, Shenzhen University, Shenzhen 518060
3Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118
Download: PDF(1397KB)   PDF(mobile)(1400KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four metals with distinctly different thermal conductivities, i.e., titanium, nickel, molybdenum, and copper, are selected as light absorbers. The lap welding is conducted with an 808 nm diode laser and simulation experiments are also conducted. Nickel electroplating test is carried out to minimize the side-effects from different light absorptivities of different metals. The results show that the welding with an absorber of higher thermal conductivity can accommodate higher laser input power before smoking, which produces a wider and stronger welding seam. The positive role of the higher thermal conductivity can be attributed to the fact that a desirable thermal field distribution for the molecular diffusion and entanglement is produced from the case with a high thermal conductivity.
Received: 19 July 2018      Published: 15 September 2018
PACS:  42.62.Cf (Industrial applications)  
  42.70.Jk (Polymers and organics)  
  42.62.-b (Laser applications)  
Fund: Supported by the National Key R&D Program of China under Grant No 2016YFA0401100, the National Natural Science Foundation of China under Grant No 61575129, and the National High-Technology Research and Development Program of China under Grant No 2015AA021102.
Cite this article:   
Min-Qiu Liu, De-Qin Ouyang, Chun-Bo Li et al  2018 Chin. Phys. Lett. 35 104205
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Min-Qiu Liu
De-Qin Ouyang
Chun-Bo Li
Hui-Bin Sun
Shuang-Chen Ruan
[1]Duley W W and Mueller R E 1992 Polym. Eng. Sci. 32 582
[2]Brown N, Kerr D, Jackson M R and Parkin R M 2000 Opt. Laser Technol. 32 139
[3]Amanat N, Chaminade C, Grace J, McKenzie D R and James N L 2010 Mater. Des. 31 4823
[4]Jones I 2002 Assembly Autom. 22 129
[5]Potente H, Karger O and Fiegler G 2002 Macromol. Mater. Eng. 287 734
[6]Treusch H G and Beyer E 1994 Proc. SPIEThe Int. Soc. For Opt. Eng. 2207 392
[7]Kurosaki Y 2005 J. Quant. Spectrosc. Radiat. Transfer 93 25
[8]Liu M Q, Ouyang D Q, Zhao J Q, Li C B, Sun H B and Ruan S C 2018 Opt. Laser Technol. 105 242
[9]Visco A M, Galtieri G, Torrisi L and Scolaro C 2015 Int. J. Polym. Anal. & Characterization 20 442
[10]Mamuschkin V, Roesner A and Aden M 2013 Phys. Procedia 41 172
[11]Nakhaei M R, Mostafa N B and Naderi A G 2013 Iran. Polym. J. 22 351
[12]Kagan V, Chambers A and Bray R 2003 J. Reinf. Plast. Compos. 22 593
[13]Lossin A and Aktiengesellschaft A N 2007 Ullmann's Encyclopedia of Industrial Chemistry (Berlin: Wiley) vol 3 chap 90 p 4
[14]Lepatov J S 1987 Physical and Chemical Properties of Polymers Handbook (Beijing: China Petrochemical Press) vol 2 chap 4 p 314 (in Chinese)
[15]Bailey and Janet 2011 Properties Behavior Polymers (New York: Wiley) vol 2 chap 17 p 647
[16]Prabhakaran R, Kontopoulou M, Zak G, Bates P J and Baylis B K 2006 J. Thermoplast. Compos. 19 427
[17]Cao X 2011 PhD Dissertation (Kingston: Queen's University) p 108
[18]Chen M, Zak G, Bates P J, Baylis B K and Mcleod M 2011 Polym. Eng. Sci. 51 1626
[19]Rodríguez Vidal E, Quintana I and Gadea C 2014 Opt. Laser Technol. 57 194
[20]Jaeschke P, Wippo V, Suttmann O and Overmeyer L 2015 J. Laser Appl. 27 S29004
Related articles from Frontiers Journals
[1] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 104205
[2] Dai-Bing Zhou, Song Liang, Liang-Shun Han, Ling-Juan Zhao, Wei Wang. Widely Tunable Two-Section Directly Modulated DBR Lasers for TWDM-PON System[J]. Chin. Phys. Lett., 2017, 34(3): 104205
[3] Xi-Kui Ren, Chen-Lin Du, Chun-Bo Li, Li Yu, Jun-Qing Zhao, Shuang-Chen Ruan. Silicon Wafer: a Direct Output Coupler in Tm:YLF Laser[J]. Chin. Phys. Lett., 2016, 33(11): 104205
[4] CUI Wei, SI Jin-Hai, CHEN Tao, YAN Fei, CHEN Feng, HOU Xun. Suppression of the Thermal Effects in the Femtosecond Laser Processing of Fiber Bragg Gratings[J]. Chin. Phys. Lett., 2013, 30(10): 104205
[5] BING Pi-Bin, **, YAO Jian-Quan, XU De-Gang, XU Xiao-Yan, LI Zhong-Yang, . High-Quality Continuous-Wave Imaging with a 2.53THz Optical Pumped Terahertz Laser and a Pyroelectric Detector[J]. Chin. Phys. Lett., 2010, 27(12): 104205
[6] DONG Zhi-Wei, QIAN Shi-Xiong, YANG Xiu-Chun, CHEN De-Ying. Irradiation Effects of Femtosecond Pulses on Refractive Index of Ag-Embedded Nanocomposite Glasses[J]. Chin. Phys. Lett., 2010, 27(2): 104205
[7] ZHOU Ming, ZHAO Guo-Huan, HUANG Tao, DING Hua, CAI Lan. Characterizations of Stress and Strain Variation in Three-Dimensional Forming of Laser Micro-Manufacturing[J]. Chin. Phys. Lett., 2010, 27(2): 104205
[8] ZHOU Ming, YUAN Dong-Qing, ZHANG Wei, SHEN Jian, LI Bao-Jia, SONG Juan, CAI Lan. Sub-wavelength Ripple Formation on Silicon Induced by Femtosecond Laser Radiation[J]. Chin. Phys. Lett., 2009, 26(3): 104205
[9] LI Jun-Hong, WANG Cheng-Hao, XU Lian, XIE Shu. Pt/Ti Electrodes of PZT Thin Films Patterning by Novel Lift-Off Using ZnO as a Sacrificial Layer[J]. Chin. Phys. Lett., 2008, 25(1): 104205
[10] FANG Dai-Ning, SUN Yu-Xin, SOH Ai-Kah. Analysis of Frequency Spectrum of Laser-Induced Vibration of Microbeam Resonators[J]. Chin. Phys. Lett., 2006, 23(6): 104205
[11] Raid A. Ismail, Kadhim A. Hubeatir, Abdullah K. Abass. Amorphous/Crystalline (n-n) Si Heterojunction Photodetector Made by Q-Switched 0.532-mm Laser Pulses with Novel Technique[J]. Chin. Phys. Lett., 2006, 23(2): 104205
[12] NAKAYA Takayuki QIU Jian-Rong, ZHOU Chang-He, HIRAO Kazuyuki,. Fabrication of Dammann Gratings Inside Glasses by a Femtosecond Laser[J]. Chin. Phys. Lett., 2004, 21(6): 104205
[13] YE Xiao-Hu, CHEN Xi. Importance of Marangoni Convection in Laser Full-Penetration Welding[J]. Chin. Phys. Lett., 2002, 19(6): 104205
Full text