Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 097302    DOI: 10.1088/0256-307X/35/9/097302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Different Thermal Stabilities of Cation Point Defects in LaAlO$_{3}$ Bulk and Films
Li Guan, Guang-Ming Shen, Hao-Tian Ma, Guo-Qi Jia, Feng-Xue Tan, Ya-Nan Liang, Zhi-Ren Wei**
Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002
Cite this article:   
Li Guan, Guang-Ming Shen, Hao-Tian Ma et al  2018 Chin. Phys. Lett. 35 097302
Download: PDF(737KB)   PDF(mobile)(716KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the first-principles method, we investigate the thermal stability of cation point defects in LaAlO$_{3}$ bulk and films. The calculated densities of states indicate that cation vacancies and antisites act as acceptors. The formation energies show that cation vacancies are energetically favorable in bulk LaAlO$_{3}$ under O-rich conditions, while the Al$_{\rm La}$ antisites are stable in reducing atmosphere. However, the same behavior does not appear in the case of LaAlO$_{3}$ films. For LaO-terminated LaAlO$_{3}$ films, La or Al vacancies remain energetically favorable under O-rich and O-deficient conditions. For an AlO$_{2}$-terminated surface, under O-rich condition the La interstitial atom is repelled from the outmost layer after optimization, which releases more stress leading to the decrease of total energy of the system. An Al interstitial atom has a smaller radius so that it can stay in distorted films and becomes more stable under O-deficient conditions, and the Al interstitial atoms can be another possible carrier source contribution to the conductivity of n-type interface under an ultrahigh vacuum. La and Al antisites have similar formation energy regardless of oxygen pressure. The results would be helpful to understand the defect structures of LaAlO$_{3}$-related materials.
Received: 03 May 2018      Published: 29 August 2018
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Supported by the Hebei Provincial Young Top-Notch Talent Support Program under Grant No BJRC2016, the Innovative Funding Project of Graduates of Hebei University under Grant No hbu2018ss62, and the Midwest Universities Comprehensive Strength Promotion Project.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/9/097302       OR      https://cpl.iphy.ac.cn/Y2018/V35/I9/097302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li Guan
Guang-Ming Shen
Hao-Tian Ma
Guo-Qi Jia
Feng-Xue Tan
Ya-Nan Liang
Zhi-Ren Wei
[1]Brown R, Pendrick V, Kalokitis D and Chai B H T 1990 Appl. Phys. Lett. 57 1351
[2]Jacob M V, Mazierska J, Savvides N, Ohshima S and Oikawa S 2002 Physica C 372 474
[3]Muller D A, Sorsch T Moccio S F, Baumann H, Evans Lutterodt K and Timp G 1999 Nature 399 758
[4]Samara G A 1990 J. Appl. Phys. 68 4214
[5]Lim S G, Kriventsov S, Jackson T N, Haeni J H, Schlom D G, Balbashov A M, uecker R, Reiche P, Freeouf J L and Lucovsky G 2002 J. Appl. Phys. 91 4500
[6]Edge L F, Schlom D G, Chambers S A, Cicerrella E, Freeouf J L, Hlooander B and Schubert J 2004 Appl. Phys. Lett. 84 726
[7]Katayama Y 2017 J. Ceram. Soc. Jpn. 125 793
[8]Chen J J, Zhao Y, Mao Z Y, Wang D J and Bie L J 2017 J. Lumin. 186 72
[9]Pai Y Y, Lee H, Lee J W, Annadi A, Cheng G C, Lu S C, Tomczyk M, Huang M C, Eom C B, Irvin P and Levy J 2018 Phys. Rev. Lett. 120 147001
[10]Shen S C, Hong Y P, Li C J, Hong X X, Wang X X and Nie J C 2016 Chin. Phys. B 25 076802
[11]Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammer G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J and Mannhart M J 2007 Science 317 1196
[12]Yan H, Zhang Z T, Wang S H, Wei X Y, Chen C L and Jin Ke X 2018 ACS Appl. Mater. Interfaces 10 14209
[13]Tsai M S, Li C S, Guo S T, Song M Y, Singh A K, Lee W L and Chu M W 2017 Sci. Rep. 7 1770
[14]Yu L and Zunger A 2014 Nat. Commun. 5 5118
[15]Luo X and Wang B 2008 J. Appl. Phys. 104 073518
[16]Luo X and Wang B 2008 J. Appl. Phys. 104 053503
[17]Luo X, Wang B and Zheng Y 2009 Phys. Rev. B 80 104115
[18]Basletic M, Maurice J L, Carrétéro C, Herranz G, Copie O, Bibes M, Jacquet É Bouzehouane K, Fusil S and Barthélémy A 2008 Nat. Mater. 7 621
[19]Nomura Ken-ichi, Okami S, Xie X J, Mizuno M, Fukunaga K and Ohki J Y 2011 J. Appl. Phys. 50 021502
[20]Seo H and Demkov A A 2011 Phys. Rev. B 84 045440
[21]Lanier C H, Rondinelli J M, Deng B, Kilaas R, Poeppelmeier K R and Marks L D 2007 Phys. Rev. Lett. 98 086102
[22]Zhou J, Yang M, Feng Y P and Andrivo R 2017 Phys. Rev. B 96 201406
[23]Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[24]Vanderbilt D 1990 Phys. Rev. B 41 7892
[25]Hayward S A, Morrison F D, Redfern S A T, Potapkin B V, Fomseca L R C and Korkin A 2005 Phys. Rev. B 72 054110
[26]Dereń P J and Mahiou R 2007 Opt. Mater. 29 766
[27]Knizhnik A A, Iskandarova I M, Bagatur A A, Potapkin B V, Fonseca L R C and Korkin A 2005 Phys. Rev. B 72 235329
[28]Nakatsuka A, Ohtaka O, Arima H, Nakayama N and Mizota T 2005 Acta Crystallogr. Sect. E: Struct. Rep. Online 61 i148
[29]Tanaka T, Matsunaga K, Ikuhara Y and Amamoto T Y 2003 Phys. Rev. B 68 205213
[30]Silva R and Dalpian M 2016 J. Alloys Compd. 684 544
[31]Yamamoto T and Mizoguchi T 2012 Phys. Rev. B 86 094117
[32]Sathe V G and Dubey A 2007 J. Phys.: Condens. Matter 19 382201
[33]Qiao L, Droubay T C, Varga T, Bowden M E, Shutthanandan V, Zhu Z, Kaspar T C and Chambers S A 2011 Phys. Rev. B 83 085408
[34]Weston L, Cui X Y, Ringer S P and Stampfl C 2014 Phys. Rev. Lett. 113 186401
[35]Ohtomo A and Hwang H Y 2004 Nature 427 423
Related articles from Frontiers Journals
[1] Ruiling Gao, Chao Liu, Le Fang, Bixia Yao, Wei Wu, Qiling Xiao, Shunbo Hu, Yu Liu, Heng Gao, Shixun Cao, Guangsheng Song, Xiangjian Meng, Xiaoshuang Chen, and Wei Ren. Two-Dimensional Electron Gas in MoSi$_{2}$N$_{4}$/VSi$_{2}$N$_{4}$ Heterojunction by First Principles Calculation[J]. Chin. Phys. Lett., 2022, 39(12): 097302
[2] Yu Zhang, Qingyun Zhang, Youqi Ke, and Ke Xia. Giant Influence of Clustering and Anti-Clustering of Disordered Surface Roughness on Electronic Tunneling[J]. Chin. Phys. Lett., 2022, 39(8): 097302
[3] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 097302
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 097302
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 097302
[6] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 097302
[7] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 097302
[8] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 097302
[9] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 097302
[10] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 097302
[11] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 097302
[12] Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang , Shi-Jie Sun , Yong Zhang , Wei Xiong , Xing-Yue Wang , Jian-Chen Lu, and Jin-Ming Cai . Topological-Defect-Induced Superstructures on Graphite Surface[J]. Chin. Phys. Lett., 2021, 38(2): 097302
[13] Chunyan Liao, Yahui Jin, Wei Zhang, Ziming Zhu, and Mingxing Chen. Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor[J]. Chin. Phys. Lett., 2020, 37(10): 097302
[14] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 097302
[15] Meihua Liu , Zhangwei Huang , Kuanchang Chang , Xinnan Lin , Lei Li , and Yufeng Jin. Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology[J]. Chin. Phys. Lett., 2020, 37(9): 097302
Viewed
Full text


Abstract