Chin. Phys. Lett.  2018, Vol. 35 Issue (3): 036401    DOI: 10.1088/0256-307X/35/3/036401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Spin and Orbital Magnetisms of NiFe Compound: Density Functional Theory Study and Monte Carlo Simulation
R. Masrour1**, A. Jabar1, E. K. Hlil2, M. Hamedoun3, A. Benyoussef3,4, A. Hourmatallah5, K. Bouslykhane6, A. Rezzouk6, N. Benzakour6
1Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Safi 63 46000, Morocco
2Institut Néel, CNRS et Université Grenoble Alpes, BP 166, F-38042 Grenoble Cedex 9, France
3Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat, Morocco
4Hassan II Academy of Science and Technology, Rabat, Morocco
5Equipe de Physique du Solide, Laboratoire LIPI, Ecole Normale Supérieure, BP 5206, Bensouda, Fes, Morocco
6Laboratoire de Physique du Solide, Université Sidi Mohammed Ben Abdellah, Faculté des Sciences DharMahraz, BP 1796, Fes, Morocco
Download: PDF(577KB)   PDF(mobile)(571KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The self-consistent ab initio calculations based on the density functional theory approach using the full potential linear augmented plane wave method are performed to investigate both the electronic and magnetic properties of the NiFe compound. Polarized spin within the framework of the ferromagnetic state between magnetic ions is considered. Also, magnetic moments considered to lie along (001) axes are computed. The Monte Carlo simulation is used to study the magnetic properties of NiFe. The transition temperature $T_{\rm C}$, hysteresis loop, coercive field and remanent magnetization of the NiFe compound are obtained using the Monte Carlo simulation.
Received: 06 October 2017      Published: 25 February 2018
PACS:  64.70.K-  
  02.60.Pn (Numerical optimization)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
TRENDMD:   
Cite this article:   
R. Masrour, A. Jabar, E. K. Hlil et al  2018 Chin. Phys. Lett. 35 036401
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/35/3/036401       OR      http://cpl.iphy.ac.cn/Y2018/V35/I3/036401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
R. Masrour
A. Jabar
E. K. Hlil
M. Hamedoun
A. Benyoussef
A. Hourmatallah
K. Bouslykhane
A. Rezzouk
N. Benzakour
[1]Feng Y B and Qiu T 2012 J. Alloys Compd. 513 455
[2]Chen Y Z, Luo X H, Yue G H, Luo X T and Peng D L 2009 Mater. Chem. Phys. 113 412
[3]Sun Y, Liang Q, Zhang Y, Tian Y, Liu Y, Li F and Fang D 2013 J. Magn. Magn. Mater. 332 85
[4]Jonker B T 2011 Electrical Spin Injection and Transport in Semiconductors (Boca Raton: CRCPress) p 329
[5]Jiraskova Y, Bursik J, Turek I, Hapla M, Titov A and Zivotsky O 2014 J. Alloys Compd. 594 133
[6]Coey J M D 2001 J. Alloys Compd. 326 2
[7]Islam M D N, Abbas M and Kim C G 2013 Curr. Appl. Phys. 13 2010
[8]Fang Z G, Hu H Z and Guo J X 2006 J. Chin. J. Chem. 24 468
[9]De Gioia L, Fantucci P, Guigliarelli B and Bertrand P 1999 Int. J. Quantum Chem. 73 187
[10]Mishin Y, Mehl M J and Papaconstantopoulos D A 2005 Acta Mater. 53 4029
[11]Wang K, Jiang W, Chen J N and Huang J Q 2016 Superlattices Microstruct. 97 116
[12]Jiang W and Wang Y N 2017 J. Magn. Magn. Mater. 426 785
[13]Jiang W and Huang J Q 2016 Physica E 78 115
[14]Jiang W, Wang Z, Guo A B, Wang K and Wang Y N 2015 Physica E 73 250
[15]Blaha P, Schwartz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Cryst. Properties (Vienna University of Technology, Austria) ISBN 3-9501031-1-2
[16]Holl, W E and Brown H A 1972 Phys. Stat. Sol. (a) 10 249
[17]Sarasa M 2005 Einsatz neuer weichmagnetischer Werkstoffe bei elektrischen Maschinen im Kraftfahrzeug (Neubiberg, University der Bundeswehr München, German)
[18]Oleksakova D, Kollar P, Fuzer J, Kusy M, Roth S and Polanski K 2007 J. Magn. Magn. Mater. 316 e838
[19]Kollie T G and Brooks C R 1973 Phys. Stat. Sol. (a) 19 545
[20]Fleaca C T, Morjan I, Alexandrescu R, Dumitrache F, Soare I, Gavrila-Florescu L, Norm F L and Derory A 2009 Appl. Surf. Sci. 255 5386
[21]Mi B Z, Wang H Y and Zhou Y S 2010 J. Magn. Magn. Mater. 322 952
[22]Kocakaplan Y and Kantar E 2014 Chin. Phys. B 23 046801
[23]Kocakaplan Y, Kantar E and Keskin M 2013 Eur. Phys. J. B 86 1
[24]Suen J S, Lee M H, Teeter G and Erksine J L 1999 Phys. Rev. B 59 4249
[25]Wu H W, Tsai C J and Chen L J 2007 Appl. Phys. Lett. 90 043121
[26]Duque J G S, Souza E A, Meneses C T and Kubota L 2007 Physica B 398 287
[27]Yu A C C, Mizuno M, Sasaki Y and Kondo H 2002 Appl. Phys. Lett. 81 3768
[28]Peng D L, Sumiyama K, Yamamuro S, Hihara T and Konno T J 1999 Phys. Stat. Sol. (a) 172 209
Related articles from Frontiers Journals
[1] WAN Jian-Feng. Spontaneous Magnetization and Magnon-TA Phonon Interaction during the Premartensitic Transformation in Ni2 MnGa Alloy[J]. Chin. Phys. Lett., 2012, 29(10): 036401
[2] CAI Ying-Xiang, XU Rui. First-Principles Study of the γ Angle Deformation Path in the Wurtzite-to-Rocksalt Phase Transition in Aluminum Nitride[J]. Chin. Phys. Lett., 2010, 27(9): 036401
[3] CAI Ying-Xiang, XU Rui. Synthesizing Metastable Rocksalt-Type MgTe Based on High-Pressure Solid-State Phase Transition: A First-Principles Study[J]. Chin. Phys. Lett., 2009, 26(11): 036401
[4] JIANG Sheng, BAI Li-Gang, LIU Jing, XIAO Wan-Sheng, LI Xiao-Dong, LI Yan-Chun, TANG Ling-Yun, ZHANG Yu-Feng, ZHANG De-Chun, ZHENG Li-Rong. The Phase Transition of Eu2O3 under High Pressures[J]. Chin. Phys. Lett., 2009, 26(7): 036401
Viewed
Full text


Abstract