Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 026801    DOI: 10.1088/0256-307X/35/2/026801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Thickness Effect on (La$_{0.26}$Bi$_{0.74}$)$_{2}$Ti$_{4}$O$_{11}$ Thin-Film Composition and Electrical Properties
Hui-Zhen Guo, An-Quan Jiang**
State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai 200433
Cite this article:   
Hui-Zhen Guo, An-Quan Jiang 2018 Chin. Phys. Lett. 35 026801
Download: PDF(2804KB)   PDF(mobile)(2433KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Highly oriented (00l) (La$_{0.26}$Bi$_{0.74}$)$_{2}$Ti$_{4}$O$_{11}$ thin films are deposited on (100) SrTiO$_{3}$ substrates using the pulsed laser deposition technique. The grains form a texture of bar-like arrays along SrTiO$_{3}$ $\langle 110\rangle$ directions for the film thickness above 350 nm, in contrast to spherical grains for the reduced film thickness below 220 nm. X-ray diffraction patterns show that the highly ordered bar-like grains are the ensemble of two lattice-matched monoclinic (La,Bi)$_{4}$Ti$_{3}$O$_{12}$ and TiO$_{2}$ components above a critical film thickness. Otherwise, the phase decomposes into the random mixture of Bi$_{2}$Ti$_{2}$O$_{7}$ and Bi$_{4}$Ti$_{3}$O$_{4}$ spherical grains in thinner films. The critical thickness can increase up to 440 nm as the films are deposited on LaNiO$_{3}$-buffered SrTiO$_{3}$ substrates. The electrical measurements show the dielectric enhancement of the multi-components, and comprehensive charge injection into interfacial traps between (La,Bi)$_{4}$Ti$_{3}$O$_{12}$ and TiO$_{2}$ components occurs under the application of a threshold voltage for the realization of high-charge storage.
Received: 25 October 2017      Published: 23 January 2018
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  67.80.dm (Films)  
Fund: Supported by the Basic Research Project of Shanghai Science and Technology Innovation Action under Grant No 17JC1400300, the National Key Basic Research Program of China under Grant No 2014CB921004, the National Natural Science Foundation of China under Grant No 61674044, and the Program of Shanghai Subject Chief Scientist under Grant No 17XD1400800.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/026801       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/026801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui-Zhen Guo
An-Quan Jiang
[1]Subbarao E C 1962 J. Am. Ceram. Soc. 45 564
[2]Kahlenberg V and Bohm H 1994 J. Phys.: Condens. Matter 6 6221
[3]Kahlenberg V and Bohm H 1995 Acta Crystallogr. Sect. B 51 11
[4]Buscaglia M T, Sennour M, Buscaglia V, Bottino C, Kalyani V and Nanni P 2011 Cryst. Growth Des. 11 1394
[5]Jiang A Q, Cheng Z H, Cheng F, Zhou Y L, He M and Yang G Z 2001 Phys. Rev. B 63 104102
[6]Jiang A Q, Hu Z X and Zhang L D 1999 J. Appl. Phys. 85 1739
[7]Liu J, Duan C G, Yin W G, Mei W N, Smith R W and Hardy J R 2003 J. Chem. Phys. 119 2812
[8]Meng J F, Katiyar R S and Zou G T 1997 J. Raman Spectrosc. 28 797
[9]Jiang A Q, Hu Z X and Zhang L D 1999 Appl. Phys. Lett. 74 114
[10]Black C T and Welser J J 1999 IEEE Trans. Electron Devices 46 776
[11]Hardy A, D'Haen J, Goux L, Dirk, Marlies, Rul H V and Mullens J 2007 Chem. Mater. 19 2994
[12]Lee B T and Hwang C S 2000 Appl. Phys. Lett. 77 124
[13]Vendik O G, Zubko S P and Ter-Martirosayn L T 1998 Appl. Phys. Lett. 73 37
[14]Pertsev N A, Zembilgotov A G and Tagantsev A K 1998 Phys. Rev. Lett. 80 1988
[15]Park B H, Kang B S, Bu S D, Noh T W, Lee J and Jo W 1999 Nature 401 682
[16]Yang X N, Huang B B, Wang H B, Shang S H, Yao W F and Wei J Y 2004 J. Cryst. Growth 270 98
[17]Mizutani Y, Kiguchi T, Konno T J, Funakubo H and Uchida H 2010 Jpn. J. Appl. Phys. 49 09MA02
[18]Chu C M and Lin P 1997 Appl. Phys. Lett. 70 249
[19]Nakamura T, Muhammet R, Shimizu M and Shiosaki T 1993 Jpn. J. Appl. Phys. Part. 32 4086
[20]Merka O, Bahnemann D W and Wark M 2014 Catal. Today 225 102
[21]Borghols W J H, Wagemaker M, Lafont U, Kelder E M and Mulder F M 2008 Chem. Mater. 20 2949
[22]Lardhi S, Noureldine D, Harb M, Ziani A, Cavallo L and Takanabe K 2016 J. Chem. Phys. 144 134702
[23]Theis C D, Yeh J, Schlom D G, Hawley M E, Brown G W, Jiang J C and Pan X Q 1998 Appl. Phys. Lett. 72 2817
[24]Shin H, De Guire M R and Heuer A H 1998 J. Appl. Phys. 83 3311
[25]Ha H K, Yoshimoto M, Koinuma H, Moon B K and Ishiwara H 1996 Appl. Phys. Lett. 68 2965
[26]Shimada S, Kodaira K and Matsushita T 1977 J. Cryst. Growth 41 317
[27]Dobal P S and Katiyar R S 2002 J. Raman Spectrosc. 33 405
[28]Idink H, Srikanth V, White W B and Subbarao E C 1994 J. Appl. Phys. 76 1819
[29]Wu Y, Zhang D, Yu J and Wang Y 2009 Mater. Chem. Phys. 113 422
[30]Marchand R, Brohan L and Tournoux M 1980 Mater. Res. Bull. 15 1129
[31]Shen M R, Ge S B and Cao W W 2001 J. Phys. D 34 2935
[32]Jiang A Q, Chen Z H, Zhou Y L and Yang G Z 2001 Solid State Commun. 120 65
[33]Csikor F F, Motz C, Weygand D, Zaiser M and Zapperi S 2007 Science 318 251
[34]Fouskova A and Cross L E 1970 J. Appl. Phys. 41 2834
Related articles from Frontiers Journals
[1] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 026801
[2] Chi Ding, Junjie Wang, Yu Han, Jianan Yuan, Hao Gao, and Jian Sun. High Energy Density Polymeric Nitrogen Nanotubes inside Carbon Nanotubes[J]. Chin. Phys. Lett., 2022, 39(3): 026801
[3] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 026801
[4] Rui-Chun Xiao, Zibo Wang, Zhi-Qiang Zhang, Junwei Liu, and Hua Jiang. Magnus Hall Effect in Two-Dimensional Materials[J]. Chin. Phys. Lett., 2021, 38(5): 026801
[5] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 026801
[6] Yi-Feng Hu, Xuan Guo, Qing-Qian Qiu, Tian-Shu Lai. Characteristics of Sb$_{6}$Te$_{4}$/VO$_{2}$ Multilayer Thin Films for Good Stability and Ultrafast Speed Applied in Phase Change Memory[J]. Chin. Phys. Lett., 2018, 35(9): 026801
[7] Xiao-Qin Zhu, Rui Zhang, Yi-Feng Hu, Tian-Shu Lai, Jian-Hao Zhang, Hua Zou, Zhi-Tang Song. Crystallization Process of Superlattice-Like Sb/SiO$_{2}$ Thin Films for Phase Change Memory Application[J]. Chin. Phys. Lett., 2018, 35(5): 026801
[8] Yi Ren, Fang Cheng. Ballistic Transport through a Strained Region on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2017, 34(2): 026801
[9] Fang Cheng, Bing He. Anisotropic Ballistic Transport through a Potential Barrier on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2016, 33(05): 026801
[10] Long Du, Yong-Long Wang, Guo-Hua Liang, Guang-Zhen Kang, Hong-Shi Zong. Schr?dinger Equation of a Particle on a Rotating Curved Surface[J]. Chin. Phys. Lett., 2016, 33(03): 026801
[11] ZHANG Shi-Ying, XIU Xiang-Qian, HUA Xue-Mei, XIE Zi-Li, LIU Bin, CHEN Peng, HAN Ping, LU Hai, ZHANG Rong, ZHENG You-Dou. Synthesis and Growth Mechanism: A Novel Fishing Rod-Shaped GaN Nanorods[J]. Chin. Phys. Lett., 2014, 31(05): 026801
[12] ZHANG Zhi-Qiang, LIU Yi-Peng, DAI Yan-Feng, CHEN Jiang-Shan, MA Dong-Ge, ZHANG Hong-Mei. High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers[J]. Chin. Phys. Lett., 2014, 31(04): 026801
[13] ZHANG Shi-Ying, XIU Xiang-Qian, LIN Zeng-Qin, HUA Xue-Mei, XIE Zi-Li, ZHANG Rong, ZHENG You-Dou . The Formation and Characterization of GaN Hexagonal Pyramids[J]. Chin. Phys. Lett., 2013, 30(5): 026801
[14] DENG Yuan, LIU Jing, WANG Yao, and LIANG Li-Xing. Sacrifice-Template Synthesis of CdTe Nanorod Arrays in Glycol via a Solvothermal Process[J]. Chin. Phys. Lett., 2012, 29(8): 026801
[15] WANG Guo-Biao, XIONG Huan, LIN You-Xi, FANG Zhi-Lai, KANG Jun-Yong, DUAN Yu, SHEN Wen-Zhong. Green Emission from a Strain-Modulated InGaN Active Layer[J]. Chin. Phys. Lett., 2012, 29(6): 026801
Viewed
Full text


Abstract