Chin. Phys. Lett.  2017, Vol. 34 Issue (12): 128501    DOI: 10.1088/0256-307X/34/12/128501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures
Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang**, Yue Hao
Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
Cite this article:   
Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang et al  2017 Chin. Phys. Lett. 34 128501
Download: PDF(1441KB)   PDF(mobile)(1438KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Superior characteristics of AlGaN-channel metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs) at high temperatures are demonstrated in detail. The temperature coefficient of the maximum saturation drain current for the AlGaN-channel MIS HEMT can be reduced by 50% compared with the GaN-channel HEMT. Moreover, benefiting from the better suppression of gate current and reduced leakage current in the buffer layer, the AlGaN-channel MIS HEMT demonstrates an average breakdown electric field of 1.83 MV/cm at 25$^{\circ}\!$C and 1.06 MV/cm at 300$^{\circ}\!$C, which is almost 2 times and 3 times respectively larger than that of the reference GaN-channel HEMT. Pulsed mode analyses suggest that the proposed device suffers from smaller current collapse when the temperature reaches as high as 300$^{\circ}\!$C.
Received: 03 July 2017      Published: 24 November 2017
PACS:  85.30.Tv (Field effect devices)  
  72.80.Ey (III-V and II-VI semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Supported by the 111 Project (B12026).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/12/128501       OR      https://cpl.iphy.ac.cn/Y2017/V34/I12/128501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li Zhang
Jin-Feng Zhang
Wei-Hang Zhang
Tao Zhang
Lei Xu
Jin-Cheng Zhang
Yue Hao
[1]Zhang K, Cao M Y, Lei X Y, Zhao S L, Yang L Y, Zheng X F, Ma X H and Hao Y 2013 Chin. Phys. B 22 097303
[2]Chu F T, Chen C, Zhou W and Liu X Z 2013 Chin. Phys. Lett. 30 097303
[3]Quan S, Ma X H, Zheng X F and Hao Y 2013 Chin. Phys. Lett. 30 028503
[4]Wang Y, Yu N S, Li M and Lau K M 2011 Chin. Phys. Lett. 28 057102
[5]Li X D, Zhang J C, Zou Y, Ma X Z, Liu C, Zhang W H, Wen H J and Hao Y 2015 Chin. Phys. Lett. 32 077205
[6]Nanjo T, Takeuchi M, Suita M, Abe Y, Oishi T and Tokuda Y 2008 Appl. Phys. Express 1 011101
[7]Stroke G W and Halioua M 1972 Phys. Lett. A 39 269
[8]Vitanov S, Palankovski V, Maroldt S and Quay R 2010 Solid-State Electron. 54 1105
[9]Arulkumaran S, Egawa T, Ishikawa H and Jimbo T 2002 Appl. Phys. Lett. 80 2186
[10]Krispin P, Spruytte S G, Harris J S and Ploog K H 2000 J. Appl. Phys. 88 4153
[11]Levinshtein M E, Rumyantsev S L and Shur M S 2008 Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (New York: Wiley)
[12]Maeda N, Tsubaki K, Saitoh T and Kobayashi N 2001 Appl. Phys. Lett. 79 1634
[13]Simon J, Protasenko V, Lian C, Xing H and Jena D 2010 Science 327 60
[14]Zhang J F, Wang C, Zhang J C and Hao Y 2006 Chin. Phys. B 15 1060
[15]Albert G, Andrew M, Erica A, Carlos A, Michael P, Michael E, Torben R and Robert J 2016 Appl. Phys. Lett. 109 033509
[16]Ulek R T, Ligaz A, Okden S G, Teke A, zturk M O, Kasap M, Czelik S O, Arsian E and Zbay E O 2009 J. Appl. Phys. 105 013707
[17]Yagi S, Shimizu M, Inada M, Yamamoto Y, Piao G and Okumura H 2006 Solid-State Electron. 50 1057
[18]Eldad B T, Hilt O, Brunner F, Wurfl J and Trankle G 2008 IEEE Trans. Electron Devices 55 3354
[19]Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron Devices 48 560
[20]Meneghesso G, Verzellesi G, Pierobon R and Rampazzo F 2004 IEEE Trans. Electron Devices 51 1554
Related articles from Frontiers Journals
[1] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 128501
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 128501
[3] Si-Yuan Chen, Xin Yu, Wu Lu, Shuai Yao, Xiao-Long Li, Xin Wang, Mo-Han Liu, Shan-Xue Xi, Li-Bin Wang, Jing Sun, Cheng-Fa He, Qi Guo. Effects of Total-Ionizing-Dose Irradiation on Single-Event Burnout for Commercial Enhancement-Mode AlGaN/GaN High-Electron Mobility Transistors[J]. Chin. Phys. Lett., 2020, 37(4): 128501
[4] Cheng-Lei Guo, Bin-Bin Wang, Wei Xia, Yan-Feng Guo, Jia-Min Xue. A New Effect of Oxygen Plasma on Two-Dimensional Field-Effect Transistors: Plasma Induced Ion Gating and Synaptic Behavior[J]. Chin. Phys. Lett., 2019, 36(7): 128501
[5] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 128501
[6] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 128501
[7] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 128501
[8] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 128501
[9] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 128501
[10] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 128501
[11] Teng Ma, Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, Dan-Dan Su, Xue-Feng Yu, Qi Guo. An Increase in TDDB Lifetime of Partially Depleted SOI Devices Induced by Proton Irradiation[J]. Chin. Phys. Lett., 2017, 34(7): 128501
[12] Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond[J]. Chin. Phys. Lett., 2017, 34(7): 128501
[13] Pei-Fu Du, Ping Feng, Xiang Wan, Yi Yang, Qing Wan. Amorphous InGaZnO$_{4}$ Neuron Transistors with Temporal and Spatial Summation Function[J]. Chin. Phys. Lett., 2017, 34(5): 128501
[14] Yuan Liu, Kai Liu, Rong-Sheng Chen, Yu-Rong Liu, Yun-Fei En, Bin Li, Wen-Xiao Fang. Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors[J]. Chin. Phys. Lett., 2017, 34(1): 128501
[15] Jia-Min Gong, Quan Wang, Jun-Da Yan, Feng-Qi Liu, Chun Feng, Xiao-Liang Wang, Zhan-Guo Wang. Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer: Material Growth and Device Fabrication[J]. Chin. Phys. Lett., 2016, 33(11): 128501
Viewed
Full text


Abstract