Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 098101    DOI: 10.1088/0256-307X/34/9/098101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets
Li-Bo Fang, Wei Pan**, Si-Hua Zhong, Wen-Zhong Shen**
Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
Li-Bo Fang, Wei Pan, Si-Hua Zhong et al  2017 Chin. Phys. Lett. 34 098101
Download: PDF(3608KB)   PDF(mobile)(3595KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a comprehensive understanding of the nonlinear absorption characteristics of CdSe-based nanoplatelets (NPLs) synthesized by the solution-phase method and the colloidal atomic layer deposition approach through $Z$-scan techniques at 532 nm with picosecond pulses. The CdSe NPLs exhibit strong two-photon induced free carrier absorption (effective three-photon absorption) upon the nonresonant excitation, resulting in a remarkable optical limiting behavior with the limiting threshold of approximately 75 GW/cm$^{2}$. A nonlinear optical switching from saturable absorption (SA) to reverse saturable absorption (RSA) with increasing the laser intensity is observed when coating CdSe NPLs with a monolayer of CdS shell to realize the resonant absorption. The SA behavior originates from the ground state bleaching and the RSA behavior is attributed to the free carrier absorption. These findings explicitly demonstrate the potential applications of CdSe-based NPLs in nonlinear optoelectronics such as optical limiting devices, optical pulse compressors and optical switching devices.
Received: 27 April 2017      Published: 15 August 2017
PACS:  81.05.Dz (II-VI semiconductors)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  42.65.-k (Nonlinear optics)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61234005 and 11304197.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/9/098101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I9/098101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li-Bo Fang
Wei Pan
Si-Hua Zhong
Wen-Zhong Shen
[1]Pan L Y et al 2007 Appl. Phys. Lett. 91 051902
[2]Scott R et al 2015 Nano Lett. 15 4985
[3]Zhao S L et al 2016 Opt. Laser Technol. 82 104
[4]Guzelturk B et al 2014 ACS Nano 8 6599
[5]She C X et al 2014 Nano Lett. 14 2772
[6]Qu S L et al 2002 Chem. Phys. Lett. 356 403
[7]Suchand Sandeep C S et al 2010 Chem. Phys. Lett. 485 326
[8]Huang T et al 2008 Chem. Phys. Lett. 451 213
[9]Salah A et al 2015 Appl. Surf. Sci. 353 112
[10]Wang F et al 2010 Analyst 135 1839
[11]Gerdova I and Haché A 2005 Opt. Commun. 246 205
[12]Achtstein A W et al 2013 J. Phys. Chem. C 117 25756
[13]Xing G C et al 2010 Appl. Phys. Lett. 97 061112
[14]Ithurria S and Dubertret B 2008 J. Am. Chem. Soc. 130 16504
[15]Feng X B and Ji W 2009 Opt. Express 17 13140
[16]Zeng Y et al 2013 Appl. Phys. Lett. 102 043308
[17]Ithurria S and Talapin D V 2012 J. Am. Chem. Soc. 134 18585
[18]Achtstein A W et al 2015 J. Phys. Chem. C 119 20156
[19]Yeltik A et al 2015 J. Phys. Chem. C 119 26768
[20]Sheik-Bahae M et al 1990 IEEE J. Quantum Electron. 26 760
[21]Chen X B et al 2003 Nano Lett. 3 799
[22]Cherevkov S A et al 2013 Phys. Rev. B 88 041303
[23]Ma Y Z et al 2012 Appl. Opt. 51 5432
[24]He J et al 2005 Opt. Express 13 9235
[25]Rao S V et al 2011 Chem. Phys. Lett. 514 98
[26]Sutherland R L et al 2005 J. Opt. Soc. Am. B 22 1939
[27]Gu. B et al 2008 Appl. Phys. Lett. 92 091118
[28]Sippel P et al 2015 Nano Lett. 15 2409
[29]Liu Z B et al 2008 Adv. Mater. 20 511
[30]Eshet H et al 2013 Nano Lett. 13 5880
[31]Sreeramulu V et al 2014 J. Phys. Chem. C 118 30333
[32]Chen J L T et al 2014 New J. Chem. 38 985
[33]Lee Y H et al 2009 Appl. Phys. Lett. 95 023105
[34]Gao Y C et al 2005 Opt. Commun. 251 429
[35]Wang J et al 2010 Opt. Commun. 283 3525
[36]Ma Y J et al 2011 Opt. Lett. 36 3431
[37]Band Y B et al 1986 Chem. Phys. Lett. 126 280
[38]Roy S and Yadav C 2013 Appl. Phys. Lett. 103 241113
Related articles from Frontiers Journals
[1] Yu-Ping Jin, Bin Zhang, Jian-Zhong Wang, Li-Qun Shi. P-Type Nitrogen-Doped ZnO Films Prepared by In-Situ Thermal Oxidation of Zn$_{3}$N$_{2}$ Films[J]. Chin. Phys. Lett., 2016, 33(05): 098101
[2] Mahdi Ezheiyan, Hossein Sadeghi, Mohammad-Hossein Tavakoli. Thermal Analysis Simulation of Germanium Zone Refining Process Assuming a Constant Radio-Frequency Heating Source[J]. Chin. Phys. Lett., 2016, 33(05): 098101
[3] M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E. K. Girija, D. Pathinettam Padiyan. Rice Husk Templated Mesoporous ZnO Nanostructures for Ethanol Sensing at Room Temperature[J]. Chin. Phys. Lett., 2015, 32(07): 098101
[4] ZHANG Bin, LI Min, WANG Jian-Zhong, SHI Li-Qun. P-type ZnO:N Films Prepared by Thermal Oxidation of Zn3N2[J]. Chin. Phys. Lett., 2013, 30(2): 098101
[5] YANG Xiu-Ying, CHENG Jun-Ye, LI Bin, CAO Wen-Qiang, YUAN Jie, ZHANG De-Qing, CAO Mao-Sheng. Micro-Nanometer Parasitic Crystal Growth and Photoluminescence Property of Unique Screw-Cone Like Zn2GeO4-ZnO by Combustion Oxidization[J]. Chin. Phys. Lett., 2012, 29(10): 098101
[6] SHI Wei, TAI Qiang, XIA Xian-Hai, YI Ming-Dong, XIE Ling-Hai, FAN Qu-Li, WANG Lian-Hui, WEI Ang, and HUANG Wei. Unipolar Resistive Switching Effects Based on Al/ZnO/P++-Si Diodes for Nonvolatile Memory Applications[J]. Chin. Phys. Lett., 2012, 29(8): 098101
[7] DING Bin-Feng. Characterization of a ZnO Epilayer Grown on Sapphire by using Rutherford Backscattering/Channeling and X-Ray Diffraction[J]. Chin. Phys. Lett., 2012, 29(3): 098101
[8] HUANG Hai-Qin, SUN Jian, LIU Feng-Juan, ZHAO Jian-Wei, HU Zuo-Fu, LI Zhen-Jun, ZHANG Xi-Qing**, WANG Yong-Sheng . Characteristics and Time-Dependent Instability of Ga-Doped ZnO Thin Film Transistor Fabricated by Radio Frequency Magnetron Sputtering[J]. Chin. Phys. Lett., 2011, 28(12): 098101
[9] FENG Qiu-Ju**, JIANG Jun-Yan, TAO Peng-Cheng, LIU Shuang, XU Rui-Zhuo, LI Meng-Ke, SUN Jing-Chang . The Fabrication and Characterization of Well Aligned Petal-Like Arsenic-Doped Zinc Oxide Microrods[J]. Chin. Phys. Lett., 2011, 28(10): 098101
[10] REN Guo-Zhong, LIU Yang, MA Hong-An, SU Tai-Chao, LIN Le-Jing, DENG Le, JIANG Yi-Ping, ZHENG Shi-Zhao, JIA Xiao-Peng** . Thermoelectric Properties of Te-Doped Ba0.32Co4Sb12−xTexPrepared at HPHT[J]. Chin. Phys. Lett., 2011, 28(4): 098101
[11] WANG Cong, ZHANG Fang, KIM Nam-Young. Development and Characterization of Metal-Insulator-Metal Capacitors with SiNx Thin Films by Plasma-Enhanced Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2010, 27(7): 098101
[12] ZHOU Xiao-Fang, ZHANG Hui, LI Yong, TANG Xiao-Dong, CHEN Qing-Ming, ZHANG Peng-Xiang. Giant Temperature Coefficient of Resistance in ZnO/Si (111) Thin Films[J]. Chin. Phys. Lett., 2010, 27(1): 098101
[13] WANG Kun, DING Zhi-Bo, LI Lin, YAO Shu-De. Depth Dependence of Tetragonal Distortion of a ZnO/Mg0.1Zn0.9O/ZnO Heterostructure Studied by Rutherford Backscattering/Channeling[J]. Chin. Phys. Lett., 2009, 26(10): 098101
[14] GAO Mei-Zhen, ZHANG Feng, LIU Jing, SUN Hui-Na. Effect of Annealing Conditions on Properties of Sol-Gel Derived Al-Doped ZnO Thin Films[J]. Chin. Phys. Lett., 2009, 26(8): 098101
[15] ZHANG Yang, DIAO Da-Sheng. Enhanced Field Emission from Vertical ZnO Nanoneedles on Micropyramids[J]. Chin. Phys. Lett., 2009, 26(3): 098101
Viewed
Full text


Abstract