Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 094203    DOI: 10.1088/0256-307X/34/9/094203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Leaky Modes in Ag Nanowire over Substrate Configuration
Yin-Xing Ding1,2, Lu-Lu Wang1,2, Li Yu1,2**
1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876
2School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
Yin-Xing Ding, Lu-Lu Wang, Li Yu 2017 Chin. Phys. Lett. 34 094203
Download: PDF(1775KB)   PDF(mobile)(1766KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By launching surface plasmons propagating along the Ag nanowire deposited on a substrate, we clearly observe three leaky modes using the Fourier imaging method. The effective refractive indexes, propagation lengths and electric field distributions of the modes are investigated, which indicate that the energy of the mode with a lowest effective refractive index is mainly distributed in the air, while for the other two modes, it is mainly distributed in the substrate and in the gap between the Ag nanowire and the substrate. These modes enable such a configuration to be used as a multichannel waveguide or highly directional optical antenna, which is of fundamental importance for optical device miniaturizations and photonic circuit integrations.
Received: 15 June 2017      Published: 15 August 2017
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.82.-m (Integrated optics)  
Fund: Supported by the Ministry of Science and Technology of China under Grant No 2016YFA0301300, the National Natural Science Foundation of China under Grant Nos 11374041, 11574035 and 11404030, and the State Key Laboratory of Information Photonics and Optical Communications.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/9/094203       OR      https://cpl.iphy.ac.cn/Y2017/V34/I9/094203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yin-Xing Ding
Lu-Lu Wang
Li Yu
[1]Ozbay E 2006 Science 311 189
[2]Economou E N 1969 Phys. Rev. 182 539
[3]Stegeman G I, Hall D G and Burke J J 1983 Opt. Lett. 8 383
[4]Moreno E, Garcia-Vidal F J, Rodrigo S G, Martin-Moreno L and Bozhevolnyi S I 2006 Opt. Lett. 31 3447
[5]Verhagen E, Polman A and Kuipers L 2008 Opt. Express 16 45
[6]Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photon. 2 496
[7]Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353
[8]Sun Y and Xia Y 2002 Adv. Mater. 14 833
[9]Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R and Krenn J R 2005 Phys. Rev. Lett. 95 257403
[10]de Leon N P, Shields B J, Yu C L, Englund D E, Akimov A V, Lukin M D and Park H 2012 Phys. Rev. Lett. 108 226803
[11]Wang H, Yang Q, Fan F, Xu H and Wang Z L 2011 Nano Lett. 11 1603
[12]Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[13]Li Z, Bao K, Fang Y, Huang Y, Nordlander P and Xu H 2010 Nano Lett. 10 1831
[14]Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
[15]Wei H, Ratchford D, Li X, Xu H and Shih C K 2009 Nano Lett. 9 4168
[16]Wang L L, Zou C L, Ren X F, Liu A P, Lv L, Cai Y J, Sun F W, Guo G C and Guo G P 2011 Appl. Phys. Lett. 99 061103
[17]Lu L, Wang L L, Zou C L, Ren X F, Dong C H, Sun F W, Yu S H and Guo G C 2012 J. Phys. Chem. C 116 23779
[18]Villó-Pérez I and Arista N R 2009 Surf. Sci. 603 1
[19]Li Z, Hao F, Huang Y, Fang Y, Nordlander P and Xu H 2009 Nano Lett. 9 4383
[20]Fang Y, Li Z, Huang Y, Zhang S, Nordlander P, Halas N J and Xu H 2010 Nano Lett. 10 1950
[21]Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N, Zhang S, Nordlander P, Halas N J and Xu H 2011 Nano Lett. 11 471
[22]Wei H, Wang Z, Tian X, Käll M and Xu H 2011 Nat. Commun. 2 387
[23]Li Z, Bao K, Fang Y, Guan Z, Halas N J, Nordlander P and Xu H 2010 Phys. Rev. B 82 241402
[24]Li Q and Qiu M 2013 Opt. Express 21 8587
[25]Zhang S and Xu H 2012 ACS Nano 6 8128
[26]Wang Y, Ma Y, Guo X and Tong L 2012 Opt. Express 20 19006
[27]Wang Z, Wei H, Pan D and Xu H 2014 Laser Photon. Rev. 8 596
[28]Grandidier J, Massenot S, des Francs G C, Bouhelier A, Weeber J C, Markey L, Dereux A, Renger J, González M U and Quidant R 2008 Phys. Rev. B 78 245419
[29]Song M, Bouhelier A, Bramant P, Sharma J, Dujardin E, Zhang D and Colas-des-Francs G 2011 ACS Nano 5 5874
[30]des Francs G C, Grandidier J, Massenot S, Bouhelier A, Weeber J C and Dereux A 2009 Phys. Rev. B 80 115419
[31]Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
Related articles from Frontiers Journals
[1] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 094203
[2] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 094203
[3] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 094203
[4] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 094203
[5] Bing-Xi Xiang, Lei Wang, Yu-Jie Ma, Li Yu, Huang-Pu Han, Shuang-Chen Ruan. Supercontinuum Generation in Lithium Niobate Ridge Waveguides Fabricated by Proton Exchange and Ion Beam Enhanced Etching[J]. Chin. Phys. Lett., 2017, 34(2): 094203
[6] Wei-Jie Mai, Yi-Lin Wang, Yun-Yun Zhang, Lu-Na Cui, Li Yu. Refractive Plasmonic Sensor Based on Fano Resonances in an Optical System[J]. Chin. Phys. Lett., 2017, 34(2): 094203
[7] LIANG Han, ZHAN Ke-Tao, HOU Zhi-Ling. Extraordinary Optical Confinement in a Silicon Slot Waveguide with Metallic Gratings[J]. Chin. Phys. Lett., 2015, 32(06): 094203
[8] ZHANG Xi-Lin, LIU Song-Tao, LU Dan, ZHANG Rui-Kang, JI Chen. Design and Fabrication of a 400 GHz InP-Based Arrayed Waveguide Grating with Flattened Spectral Response[J]. Chin. Phys. Lett., 2015, 32(5): 094203
[9] Labbani Amel, Benghalia Abdelmadjid. Design of Photonic Crystal Triplexer with Core-Shell Rod Defects[J]. Chin. Phys. Lett., 2015, 32(5): 094203
[10] ZHANG Xin-Yuan, WANG Lu-Lu, CHEN Zhao, CUI Lu-Na, SHANG Ce, ZHAO Yu-Fang, DUAN Gao-Yan, LIU Jian-Bin, YU Li. The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(5): 094203
[11] SHANG Ce, CHEN Zhao, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, YU Li. Characteristics of the Coupled-Resonator Structure Based on a Stub Resonator and a Nanodisk Resonator[J]. Chin. Phys. Lett., 2014, 31(11): 094203
[12] HU Ru, LANG Pei-Lin, ZHAO Yu-Fang, DUAN Gao-Yan, WANG Lu-Lu, DAI Jin, CHEN Zhao, YU Li, XIAO Jing-Hua. Millimeter Propagation and High Confinement in Rhombus-Based Hybrid Plasmonic Waveguides[J]. Chin. Phys. Lett., 2014, 31(09): 094203
[13] Rakibul Hasan Sagor, Md. Ruhul Amin, Md. Ghulam Saber. Design of a Simple Integrated Coupler for SPP Excitation in a Dielectric Coated Ag Thin Film[J]. Chin. Phys. Lett., 2014, 31(06): 094203
[14] ZHANG Xi-Lin, LU Dan, ZHANG Rui-Kang, WANG Wei, JI Chen. A MOCVD-Growth Multi-Wavelength Laser Monolithically Integrated on InP[J]. Chin. Phys. Lett., 2014, 31(06): 094203
[15] TANG Dong-Hua, DING Wei-Qiang. Fano Resonance by Symmetry Breaking Stub in a Metal-Dielectric-Metal Waveguide[J]. Chin. Phys. Lett., 2014, 31(05): 094203
Viewed
Full text


Abstract