Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 084201    DOI: 10.1088/0256-307X/34/8/084201
Pressure Dependence of the Small-Signal Gain and Saturation Intensity of a Copper Bromide Laser
M. E. Aeinehvand1, S. Behrouzinia2**, M. K. Salem1, M. Elahei1, K. Khorasani2
1Plasma Physics Research Center, Science and Research branch, Islamic Azad University, Tehran, Iran
2Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research School, Tehran, Iran
Download: PDF(496KB)   PDF(mobile)(496KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A pair of copper bromide lasers in an oscillator–amplifier configuration is used to investigate the small signal gain and saturation intensity as amplifying parameters and output power of lasers, versus pressure of buffer gas. It is shown that the amplifying parameters and laser output power have a maximum value at optimum buffer gas pressure of 11 Torr. The challenge between microscopic parameters such as stimulated emission cross section, laser upper level lifetime, and population inversion, which determine the values of laser characteristics respective to the operational pressure of buffer gas, are investigated. Thus an optimum delay time of about 10 ns is determined, and a maximum output power equivalent to about 12 W is extracted. The amplifying parameters and measured output power of laser versus delay times show some local maxima and minima at the delay time interval of 6–43 ns.
Received: 08 May 2017      Published: 22 July 2017
PACS:  42.55.Lt (Gas lasers including excimer and metal-vapor lasers)  
Cite this article:   
M. E. Aeinehvand, S. Behrouzinia, M. K. Salem et al  2017 Chin. Phys. Lett. 34 084201
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
M. E. Aeinehvand
S. Behrouzinia
M. K. Salem
M. Elahei
K. Khorasani
[1]Kazryan M A, Petrash G G and Trofimov A N 1980 Sov. J. Quantum Electron. 10 328
[2]Nerheim N M 1977 J. Appl. Phys. 48 1186
[3]Behrouzinia S, Namdar A R, Zand M, Barry R and Hojabri A 2006 Laser Phys. 16 1616
[4]Rahimi Ashtari F, Behrouzinia S, Sajad B and Zand M 2011 Opt. Commun. 284 1318
[5]Tiwari G N, Shukla P K, Mishra R K, Shrivastava V K, Khare R and Nakhe S V 2015 Opt. Commun. 338 322
[6]Astadjov D N, Dimitrov K D, Jones D R, Kirkov V, Little L, Little C E, Sabotinov N V and Vuchkov N K 1997 Opt. Commun. 135 289
[7]Astadjov D N, Stoychev L I, Dixit S K, Nakhe S V and Sabotinov N V 2005 IEEE J. Quantum Electron. 41 1097
[8]Chan W C, Liu H P, Yen S H, Chen W Y and Lin Y H 1990 J. Appl. Phys. 67 3941
[9]Chan W C, Liu H P, Yen S H, Chen W Y, Lin Y H and Young K F 1992 Opt. Commun. 92 90
[10]Blachev I I, Minkovski N I, Kostodinov I K and Sabotinov N V 2006 J. Phys. 33 39
[11]Tiwari G N, Mishra R K, Khare R and Nakhe S V 2014 Pramana 82 217
[12]Behrouzinia S, Sadighi-Bonabi R and Parvin P 2003 Appl. Opt. 42 1013
[13]Behrouzinia S, Sadighi-Bonabi R, Parvin P and Zand M 2004 Laser Phys. 14 1050
[14]Aghababaei Nezhad M, Sajad B, Behrouzinia S, Salehinia D and Khorasani K 2010 Opt. Commun. 283 1386
[15]Behrouzinia S, Khorasani K, Kazemi H and Mashayekhi H 2011 J. Russ. Laser Res. 32 511
[16]Mohammadpour Lima S, Behrouzinia S, Salem M K, Elahei M, Khorasani K and Dorranian D 2017 Laser Phys. 27 055001
Related articles from Frontiers Journals
[1] Wei-Xin Liu, Ming-Zhe Sun. Anomalous Variation of Beat Frequency in a Dual Frequency He–Ne Laser[J]. Chin. Phys. Lett., 2016, 33(02): 084201
[2] LI Zhi-Yong, TAN Rong-Qing, HUANG Wei, XU Cheng. A Linearly-Polarized Cesium Vapor Laser with Fundamental Mode Output and Low Threshold[J]. Chin. Phys. Lett., 2014, 31(04): 084201
[3] LI Zhi-Yong, TAN Rong-Qing, XU Cheng, LI Lin. Tunable and Linewidth-Reduced Laser Diode Stack for Rubidium Laser Pumping[J]. Chin. Phys. Lett., 2013, 30(11): 084201
[4] WU Yun, TAN Yi-Dong, ZHANG Shu-Lian, LI Yan. Influence of Feedback Level on Laser Polarization in Polarized Optical Feedback[J]. Chin. Phys. Lett., 2013, 30(8): 084201
[5] LI Zhi-Yong, TAN Rong-Qing, XU Cheng, LI Lin, ZHAO Zhi-Long. A Linearly-Polarized Rubidium Vapor Laser Pumped by a Tunable Laser Diode Array with an External Cavity of a Temperature-Controlled Volume Bragg Grating[J]. Chin. Phys. Lett., 2013, 30(3): 084201
[6] CHEN Wen-Xue, ZHANG Shu-Lian, LONG Xing-Wu. Multi-Wavelength Conversion Based on Single Wavelength Results in Phase Retardation Measurement[J]. Chin. Phys. Lett., 2013, 30(3): 084201
[7] WU Yun, TAN Yi-Dong. Birefringence Optical Feedback with a Folded Cavity in HeNe Laser[J]. Chin. Phys. Lett., 2013, 30(1): 084201
[8] YANG Chen-Guang, XU Yong-Yue, ZUO Du-Luo. Temperature Characteristics of Cathode Sheath in High-Pressure Volume Discharge Derived from Emanating Shock Wave[J]. Chin. Phys. Lett., 2012, 29(12): 084201
[9] ZENG Zhao-Li, ZHANG Shu-Lian, TAN Yi-Dong, CHEN Wen-Xue, LI Yan. Phase Tuning Characteristics of a Double-Longitudinal-Mode He-Ne Laser with Optical Feedback[J]. Chin. Phys. Lett., 2012, 29(9): 084201
[10] MIAO Liang**,ZUO Du-Luo,CHENG Zu-Hai. A Terahertz Wavemeter Based on a Fabry–Perot Interferometer Composed of Two Identical Ge Etalons[J]. Chin. Phys. Lett., 2012, 29(5): 084201
[11] LI Guo-Fu,**,YU Hai-Jun,DUO Li-Ping,JIN Yu-Qi,WANG Jian,SANG Feng-Ting,WANG De-Zhen. Pulsed Chemical Oxygen Iodine Lasers Excited by Pulse Gas Discharge with the Assistance of Surface Sliding Discharge Pre-ionization[J]. Chin. Phys. Lett., 2012, 29(5): 084201
[12] YANG Zi-Ning, WANG Hong-Yan**, LU Qi-Sheng, HUA Wei-Hong, XU Xiao-Jun . An 80-W Laser Diode Array with 0.1 nm Linewidth for Rubidium Vapor Laser Pumping[J]. Chin. Phys. Lett., 2011, 28(10): 084201
[13] ZHUANG Wei, CHEN Jing-Biao** . Feasibility of Extreme Ultraviolet Active Optical Clock[J]. Chin. Phys. Lett., 2011, 28(8): 084201
[14] RAO Zhi-Ming, WANG Xin-Bing**, LU Yan-Zhao, ZUO Du-Luo, WU Tao . Two Schemes for Generating Efficient Terahertz Waves in Nonlinear Optical Crystals with a Mid-Infrared CO2 Laser[J]. Chin. Phys. Lett., 2011, 28(7): 084201
[15] SHA Peng-Fei, XIN Jian-Guo**, FANG Li-Ping, LIU Zheng-Fan, ZHOU Ying, YU Song-Lin, WEN Jian-Guo . Coupling Frequency Band of the In-Phase Locked Gain Waveguide Array Lasers[J]. Chin. Phys. Lett., 2011, 28(4): 084201
Full text