Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 075202    DOI: 10.1088/0256-307X/34/7/075202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Forming of Space Charge Wave with Broad Frequency Spectrum in Helical Relativistic Two-Stream Electron Beams
A. Lysenko1**, I. Volk1, A. Serozhko1, O. Rybalko2
1Department of Applied Mathematics and Complex Systems Modelling, Sumy State University, Sumy 40007, Ukraine
2Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
Cite this article:   
A. Lysenko, I. Volk, A. Serozhko et al  2017 Chin. Phys. Lett. 34 075202
Download: PDF(499KB)   PDF(mobile)(496KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal generation mode, and the reduction of the overall system dimensions.
Received: 14 March 2017      Published: 23 June 2017
PACS:  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Supported by the Ministry of Education and Science of Ukraine under Grant No 0117U002253.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/075202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/075202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. Lysenko
I. Volk
A. Serozhko
O. Rybalko
[1]Kulish V V 2011 Hierarchic Electrodynamics and Free Electron Lasers: Concepts, Calculations and Practical Applications (Boca Raton: CRC Press)
[2]Bekefi G and Jacobs K D 1982 J. Appl. Phys. 53 4113
[3]Botton M and Ron A 1990 J. Appl. Phys. 67 6583
[4]Wilhelmsson H 1991 Phys. Scr. 44 603
[5]Bekefi G 1992 J. Appl. Phys. 71 4128
[6]Chen C, Catravas P and Bekefi G 1993 Appl. Phys. Lett. 62 1579
[7]Kulish V V, Kuleshov S A and Lysenko A V 1994 Int. J. Infrared Millimeter Waves 15 77
[8]Kulish V V, Lysenko A V and Savchenko V I 2003 Int. J. Infrared Millimeter Waves 24 285
[9]Kulish V V, Lysenko O V, Savchenko V I and Majornikov I G 2005 Laser Phys. 15 1629
[10]McNeil B W J, Robb G R M and Poole M W 2004 Phys. Rev. E 70 035501
[11]Liu W, Yang Z and Liang Z 2007 Int. J. Infrared Millimeter Waves 27 1073
[12]Mehdian H and Abbasi N 2008 Phys. Plasmas 15 013111
[13]Mehdian H and Saviz S 2010 Chin. Phys. B 19 014214
[14]Rouhani M H and Maraghechi B 2010 Phys. Rev. Spec. Top. -Accel. Beams 13 080706
[15]Mahdizadeh N and Aghamir F M 2013 J. Appl. Phys. 113 083305
[16]Saviz S and Karimi M 2014 Chin. Phys. B 23 034103
[17]Mohsenpour T and Mehrabi N 2013 Phys. Plasmas 20 082133
[18]Nadrifard S, Maraghechi B and Mohsenpour T 2013 Plasma Phys. Control. Fusion 55 025012
[19]Mahdizadeh N and Aghamir F M 2012 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 688 51
[20]Mahdizadeh N 2015 J. Plasma Phys. 81 905810612
[21]Ng K Y 2006 Physics of Intensity Dependent Beam Instabilities (Singapore: World Scientific)
[22]Krall N A and Trivelpiece A W 1986 Principles of Plasma Physics (New York: San Francisco Press)
[23]Kulish V V, Lysenko A V and Brusnik A J 2012 J. Infrared Millim. Terahertz Waves 33 149
[24]Kulish V V, Lysenko A V and Rombovsky M Y 2010 Plasma Phys. Rep. 36 594
[25]Kulish V V et al 2015 Chin. Phys. B 24 095201
[26]Bogoliubov N N and Mitropolsky Y A 1985 Asymptotic Methods in the Theory of Non-Linear Oscillations (New York: Gordon and Breach)
[27]Briggs R J 1964 Electron-Stream Interaction with Plasmas (Cambridge: MIT Press)
Related articles from Frontiers Journals
[1] Zhong-Kui Kuang, Li-Hong Cheng, Pan-Fei Geng, Rong-An Tang, Ju-Kui Xue. Relativistic Spherical Plasma Waves in a Collisional and Warm Plasma[J]. Chin. Phys. Lett., 2018, 35(12): 075202
[2] Chun-Yun Gan, Nong Xiang, Zhi Yu. Spectral Broadening of Ion Bernstein Wave Due to Parametric Decay Instabilities[J]. Chin. Phys. Lett., 2016, 33(08): 075202
[3] SUN Xin-Feng, JIANG Zhong-He, XU Tao, HU Xi-Wei, ZHUANG Ge, WANG Lu, WANG Xiao-Hong. Absolute and Convective Instabilities of Two-Plasmon Decay in an Inhomogeneous Magnetized Plasma[J]. Chin. Phys. Lett., 2015, 32(12): 075202
[4] WANG Chuan-Bing, WEI Jing-Dong, WANG Bin, WANG Shui . Physical Process for the Pick-Up of Minor Ions by Low-Frequency Alfvén Waves[J]. Chin. Phys. Lett., 2013, 30(5): 075202
[5] Taghi Mohsenpour, Hassan Ehsani Amri. The Gain Equation of a Helical Wiggler Free Electron Laser with Ion-Channel Guiding and/or an Axial Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(3): 075202
[6] LUAN Qi-Bin, SHI Yi-Peng, and WANG Xiao-Gang. Mode Conversion and Whistler Wave Generation on an Alfvén Resonance Layer in High Beta Plasmas[J]. Chin. Phys. Lett., 2012, 29(8): 075202
[7] B. Farokhi, M. Eghbali. Effects of an Electric Field on the Cylindrical Dust Acoustic Wave in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2012, 29(7): 075202
[8] B. Farokhi, ** F. Amini, M. Eghbali . Dust Acoustic Rotation Modes in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2011, 28(7): 075202
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 075202
[10] SUN Xiao-Xia, WANG Chun-Hua, GAO Feng. Lattice Waves in Two-Dimensional Hexagonal Quantum Plasma Crystals[J]. Chin. Phys. Lett., 2010, 27(2): 075202
[11] PENG Li-Li, GAO Zhe. Effect of Elongation on Critical Gradient for Toroidal Electron Temperature Gradient Modes[J]. Chin. Phys. Lett., 2008, 25(11): 075202
[12] ZHOU Yan, LI Lian-Cai, LI Yong-Gao, JIAO Yi-Ming, DENG Zhong-Chao, YI Jiang, LIU Yi, ZHAO Kai-Jun, JI Xiao-Quan, PENG Bei-Bin, YANG Qing-wei, DUAN Xu-Ru, DING Xuan-Tong. Density Fluctuation Measurements Using FIR Interferometer on HL-2A Tokamak[J]. Chin. Phys. Lett., 2008, 25(7): 075202
[13] ZHOU Zhu-Wen, M. A. LIEBERMAN, Sungjin KIM, JI Shi-Yin, DENG Ming-Sen, SUN Guang-Yu. Low-Frequency Relaxation Oscillations in Capacitive Discharge Processes[J]. Chin. Phys. Lett., 2008, 25(2): 075202
[14] FENG Shuo, HE Feng, OUYANG Ji-Ting. Mechanism of Striation in Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2007, 24(8): 075202
[15] GAN Bao-Xia, CHEN Yin-Hua. Oscillations of Magnetized Dust Grains in Plasma Sheath with Negative Ions[J]. Chin. Phys. Lett., 2007, 24(7): 075202
Viewed
Full text


Abstract