Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 060201    DOI: 10.1088/0256-307X/34/6/060201
From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang
Sen-Yue Lou1,2
1Ningbo Collabrative Innovation Center of Nonlinear Harzard System of Ocean and Atmosphere and Faculty of Science, Ningbo University, Ningbo 315211
2Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
Download: PDF(390KB)   PDF(mobile)(395KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Chinese ancient sage Laozi said that everything comes from 'nothing'. In the work [Chin. Phys. Lett. 30 (2013) 080202], infinitely many discrete integrable systems have been obtained from nothing via simple principles (Dao). In this study, a new idea, the consistent correlated bang, is introduced to obtain nonlinear dynamic systems including some integrable ones such as the continuous nonlinear Schrödinger equation, the (potential) Korteweg de Vries equation, the (potential) Kadomtsev–Petviashvili equation and the sine-Gordon equation. These nonlinear systems are derived from nothing via suitable 'Dao', the shifted parity, the charge conjugate, the delayed time reversal, the shifted exchange, the shifted-parity-rotation and so on.
Received: 07 February 2017      Published: 23 May 2017
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
Fund: Supported by the Global Change Research Program of China under Grant No 2015CB953904, the National Natural Science Foundation of China under Grant No 11435005, the Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No ZF1213, and the K. C. Wong Magna Fund in Ningbo University.
Cite this article:   
Sen-Yue Lou 2017 Chin. Phys. Lett. 34 060201
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Sen-Yue Lou
[1]Boltz W G 1993 Lao tzu Tao te ching. In Early Chinese Texts: A Bibliographical Guide (Berkeley: University California) p 269
[2]Lou S Y, Li Y Q and Tang X Y 2013 Chin. Phys. Lett. 30 080202
[3]Crighton D G 1995 Acta Appl. Math. 39 39
[4]Lou S Y 2016 arXiv:1603.03975v2
[5]Lou S Y and Huang F 2016 Sci. Rep. 7 869
Related articles from Frontiers Journals
[1] Ya-Hong Hu, Jun-Chao Chen. Solutions to Nonlocal Integrable Discrete Nonlinear Schrödinger Equations via Reduction[J]. Chin. Phys. Lett., 2018, 35(11): 060201
[2] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 060201
[3] Jun Yang, Zuo-Nong Zhu. Higher-Order Rogue Wave Solutions to a Spatial Discrete Hirota Equation[J]. Chin. Phys. Lett., 2018, 35(9): 060201
[4] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 060201
[5] Xiang-Shu Liu, Yang Ren, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Nonlinear Excitation and State Transition of Multi-Peak Solitons[J]. Chin. Phys. Lett., 2018, 35(7): 060201
[6] Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui. Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model[J]. Chin. Phys. Lett., 2018, 35(5): 060201
[7] Senyue Lou, Ji Lin. Rogue Waves in Nonintegrable KdV-Type Systems[J]. Chin. Phys. Lett., 2018, 35(5): 060201
[8] Xin Wang, Lei Wang. Soliton, Breather and Rogue Wave Solutions for the Nonlinear Schrödinger Equation Coupled to a Multiple Self-Induced Transparency System[J]. Chin. Phys. Lett., 2018, 35(3): 060201
[9] Yu Wang, Biao Li, Hong-Li An. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators[J]. Chin. Phys. Lett., 2018, 35(1): 060201
[10] Jie Zhou, Hong-Yi Su, Fu-Lin Zhang, Hong-Biao Zhang, Jing-Ling Chen. Solving the Jaynes–Cummings Model with Shift Operators Constructed by Means of the Matrix-Diagonalizing Technique[J]. Chin. Phys. Lett., 2018, 35(1): 060201
[11] Sen-Yue Lou, Zhi-Jun Qiao. Alice–Bob Peakon Systems[J]. Chin. Phys. Lett., 2017, 34(10): 060201
[12] Kui Chen, Da-Jun Zhang. Notes on Canonical Forms of Integrable Vector Nonlinear Schrödinger Systems[J]. Chin. Phys. Lett., 2017, 34(10): 060201
[13] Jian-Bing Zhang, Ying-Yin Gongye, Shou-Ting Chen. Soliton Solutions to the Coupled Gerdjikov–Ivanov Equation with Rogue-Wave-Like Phenomena[J]. Chin. Phys. Lett., 2017, 34(9): 060201
[14] Chun-Hong Zhang, Rui Wang, Ke Wu, Wei-Zhong Zhao. A Realization of the $W_{1+\infty}$ Algebra and Its $n$-Algebra[J]. Chin. Phys. Lett., 2017, 34(8): 060201
[15] Yi-Cong Yu, Xi-Wen Guan. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive $SU(w)$ Fermi Gases[J]. Chin. Phys. Lett., 2017, 34(7): 060201
Full text