Chin. Phys. Lett.  2017, Vol. 34 Issue (4): 040301    DOI: 10.1088/0256-307X/34/4/040301
GENERAL |
Round-Robin Differential Phase Shift with Heralded Single-Photon Source
Ying-Ying Zhang1,2, Wan-Su Bao1,2**, Chun Zhou1,2, Hong-Wei Li1,2, Yang Wang1,2, Mu-Sheng Jiang1,2
1Zhengzhou Information Science and Technology Institute, Zhengzhou 450001
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Ying-Ying Zhang, Wan-Su Bao, Chun Zhou et al  2017 Chin. Phys. Lett. 34 040301
Download: PDF(499KB)   PDF(mobile)(495KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Round-robin differential phase shift (RRDPS) is a novel quantum key distribution protocol which can bound information leakage without monitoring signal disturbance. In this work, to decrease the effect of the vacuum component in a weak coherent pulses source, we employ a practical decoy-state scheme with heralded single-photon source for the RRDPS protocol and analyze the performance of this method. In this scheme, only two decoy states are needed and the yields of single-photon state and multi-photon states, as well as the bit error rates of each photon states, can be estimated. The final key rate of this scheme is bounded and simulated over transmission distance. The results show that the two-decoy-state method with heralded single-photon source performs better than the two-decoy-state method with weak coherent pulses.
Received: 21 December 2016      Published: 21 March 2017
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Supported by the National Basic Research Program of China under Grant No 2013CB338002, and the National Natural Science Foundation of China under Grant Nos 11304397 and 61505261.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/4/040301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I4/040301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ying-Ying Zhang
Wan-Su Bao
Chun Zhou
Hong-Wei Li
Yang Wang
Mu-Sheng Jiang
[1]Bennett C H and Brassard G 1984 Int. Conf. Comput. Syst. Signal Process (Bangalore, India) (New York: IEEE Press) p 175
[2]Lo H K and Chau H F 1999 Science 283 2050
[3]Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[4]Ekert A K 1991 Phys. Rev. Lett. 67 661
[5]Bennett C H 1992 Phys. Rev. Lett. 68 3121
[6]Inoue K, Waks E and Yamamoto Y 2002 Phys. Rev. Lett. 89 037902
[7]Scarani V, Acin A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92 057901
[8]Gu Y B, Bao W S, Wang Y and Zhou C 2016 Chin. Phys. Lett. 33 040301
[9]Yin Z Q, An X B and Han Z F 2015 Acta Phys. Sin. 64 140303 (in Chinese)
[10]Li Y, Bao W S, Li H W, Zhou C and Wang Y 2016 Chin. Phys. B 25 010305
[11]Sasaki T, Yamamoto Y and Koashi M 2014 Nature 509 475
[12]Braunstein S L and Loock P 2005 Rev. Mod. Phys. 77 513
[13]Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[14]Zhang Z, Yuan X, Cao Z and Ma X F 2015 arXiv:1505.02481v1
[15]Mizutani A, Imoto N and Tamaki K 2015 Phys. Rev. A 92 060303
[16]Zhang Y Y, Bao W S, Zhou C, Li H W, Wang Y and Jiang M S 2016 Opt. Express 24 20763
[17]Zhou C, Zhang Y Y, Bao W S, Li H W, Wang Y and Jiang M S 2017 Chin. Phys. B 26 020303
[18]Takesue H, Sasaki T, Tamaki K and Koashi M 2015 Nat. Photon. 9 827
[19]Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Photon. 9 832
[20]Guan J Y, Cao Z and Liu Y 2015 Phys. Rev. Lett. 114 180502
[21]Li Y H, Cao Y, Dai H, Lin J et al 2016 Phys. Rev. A 93 030302
[22]Wang Q, Wang X B and Guo G C 2007 Phys. Rev. A 75 012312
[23]Wang Q and Karlsson A 2007 Phys. Rev. A 76 014309
[24]Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[25]Gobby C, Yuan Z L and Shield A J 2004 Appl. Phys. Lett. 84 3762
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 040301
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 040301
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 040301
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 040301
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 040301
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 040301
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 040301
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 040301
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 040301
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 040301
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 040301
[15] Min Xiao, Yun-Ru Cao, Xiu-Li Song. Efficient and Secure Authenticated Quantum Dialogue Protocols over Collective-Noise Channels[J]. Chin. Phys. Lett., 2017, 34(3): 040301
Viewed
Full text


Abstract