Chin. Phys. Lett.  2017, Vol. 34 Issue (3): 035201    DOI: 10.1088/0256-307X/34/3/035201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Ramp-Wave Compression Experiment with Direct Laser Illumination on ShenGuang-III Prototype Laser Facility
Feng Wang1,2, Quan-Xi Xue1,3, Teng Ji1, Yu-Long Li1,2**, Tao Xu1,2, Xiao-Shi Peng1,2
1Research Center of Laser Fusion, China Academic of Engineering and Physics, Mianyang 621900
2Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240
3State Key Laboratory of Laser Interaction with Matter, and Northwest Institute of Nuclear Technology, Xi'an 710024
Cite this article:   
Feng Wang, Quan-Xi Xue, Teng Ji et al  2017 Chin. Phys. Lett. 34 035201
Download: PDF(1211KB)   PDF(mobile)(1204KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ramp-wave compression experiment to balance the high compression pressure generation in aluminum and x-ray blanking effect in transparent window is demonstrated with an imaging velocity interferometer system for any reflector (VISAR) on ShenGuang-III prototype laser facility. The highest pressure is about 500 GPa after using the multilayer target design Al/Au/Al/LiF and $\sim$10$^{13}$ W/cm$^{2}$ laser pulse illuminated on the planar Al target, which generates the spatial uniformity to $ < $1% over 500 μm on the ablation layer. A 2-μm-thick Au layer is used to prevent the x-ray from preheating the planar ablation Al layer and window material LiF. The imaging VISAR system can be used to record the abrupt loss of the probe beam ($\lambda=532$ nm) caused by absorption and reflection of 20-μm, 30-μm and 40-μm-thick Al, i.e., the blanking effect. Although there are slight shocks in the target, the peak pressure 500 GPa, which is the highest data up to now, is obtained with ramp-wave compression.
Received: 06 June 2016      Published: 28 February 2017
PACS:  52.35.Tc (Shock waves and discontinuities)  
  52.50.Lp (Plasma production and heating by shock waves and compression)  
  62.50.-p (High-pressure effects in solids and liquids)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11305160.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/3/035201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I3/035201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Feng Wang
Quan-Xi Xue
Teng Ji
Yu-Long Li
Tao Xu
Xiao-Shi Peng
[1]Ao T, Knudson M D, Asay J R and Davis J P 2009 J. Appl. Phys. 106 103507
[2]Lorenz K T, Edwards M J, Jankowski A F, Pollaine S M, Smith R F and Remington B A 2006 High Energy Density Phys. 2 113
[3]Swift C 2008 J. Appl. Phys. 104 073536
[4]Swift C and Johnson P 2005 Phys. Rev. E 71 066401
[5]Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Le S, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D and Wallace R 2008 J. Phys.: Conf. Ser. 112 042024
[6]Smith F, Eggert Jon H, Jankowski A, Celliers P M, John M, Gupta Y M, Asay J R and Collins G W 2007 Phys. Rev. Lett. 98 065701
[7]Davis J P 2006 J. Appl. Phys. 99 103512
[8]Hayes D B, Hall C A, Asay J R and Knudson M D 2004 J. Appl. Phys. 96 5520
[9]Asay J R 1997 Int. J. Impact. Eng. 20 27
[10]Barnes J F, Blewett P J, McQueen R G, Meyer K A and Venable D 1974 J. Appl. Phys. 45 727
[11]Loren K T z, Edwards M J, Glendinning S G, Jankowski A F, McNaney J, Pollaine S M and Remingtin B A 2005 Phys. Plasmas 12 056309
[12]Bradley D K, Eggert J H, Smith R F, Prisbrey S T, Hicks D G, Braun D G, Biener J, Hamza A V, Rudd R E and Collins G W 2009 Phys. Rev. Lett. 102 075503
[13]Wang F, Peng X S, Liu S Y, Xu T, Mei L S, Jiang X H and Ding Y K 2011 Rev. Sci. Instrum. 82 103108
[14]Wang F, Peng X S, Xue Q X, Xu T and Wei H Y 2015 Acta Phys. Sin. 64 085202 (in Chinese)
[15]Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G and Collins G W 2011 J. Appl. Phys. 109 123521
[16]Wise J L and Chhabildas L C 1985 Sandia National Laboratory, Albuquerque, NM, Report SAND-85-0310C, NTIS Order No DE85015505
[17]Hicks D G, Celliers P M, Collins G W, Eggert J H and Moon S J 2003 Phys. Rev. Lett. 91 035502
[18]Aidun J B and Gupta Y M 1991 J. Appl. Phys. 69 6998
[19]Rothman S D, Davis J P, Maw J, Robinson C M, Parker K and Palmer J 2005 J. Phys. D 38 733
[20]Rothman S D and Maw J 2006 J. Phys. IV France 134 745
[21]Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing: Defense Industry Press)
[22]Xue Q X, Wang Z B, Jiang S E, Ye X S and Liu J R 2014 AIP Adv. 4 057127
Related articles from Frontiers Journals
[1] Feng WANG, Yu-Long Li, Zhe-Bin Wang, Tao Xu, Wei-Yi Zha, Dong Yang. Demonstration of a Shock-Timing Experiment in a CH Layer at the ShenGuang III Laser Facility[J]. Chin. Phys. Lett., 2018, 35(5): 035201
[2] S. Hussain, N. Akhtar, N. Mustafa. Magnetosonic Shocks in Ultra-Relativistic Dissipative Degenerate Plasmas[J]. Chin. Phys. Lett., 2016, 33(08): 035201
[3] M. R. Hossen, S. A. Ema, A. A. Mamun. Nonlinear Dynamics in a Nonextensive Complex Plasma with Viscous Electron Fluids[J]. Chin. Phys. Lett., 2016, 33(06): 035201
[4] Shah M. G., Hossen M. R., Sultana S., Mamun A. A.. Positron-Acoustic Shock Waves in a Degenerate Multi-Component Plasma[J]. Chin. Phys. Lett., 2015, 32(08): 035201
[5] ZHANG Pin-Liang, TANG Xiu-Zhang, LI Ye-Jun, WANG Zhao, TIAN Bao-Xian, YIN Qian, LU Ze, XIANG Yi-Huai, GAO Zhi-Xing, LI Jing, HU Feng-Ming, GONG Zi-Zheng. Direct Laser-Driven Quasi-Isentropic Compression on HEAVEN-I Laser[J]. Chin. Phys. Lett., 2015, 32(07): 035201
[6] M. Ferdousi, S. Yasmin, S. Ashraf, A. A. Mamun. Ion-Acoustic Shock Waves in Nonextensive Electron-Positron-Ion Plasma[J]. Chin. Phys. Lett., 2015, 32(01): 035201
[7] WANG Feng**, PENG Xiao-Shi, JIAO Chun-Ye, LIU Shen-Ye, JIANG Xiao-Hua, DING Yong-Kun . Shock-Timing Experiment Using a Two-Step Radiation Pulse with a Polystyrene Target[J]. Chin. Phys. Lett., 2011, 28(8): 035201
[8] LI Bo, **, CHEN Yan-Jun, LI Xing . Standing Shocks in the Inner Slow Solar Wind[J]. Chin. Phys. Lett., 2011, 28(5): 035201
[9] HE Yong**, HU Xi-Wei, JIANG Zhong-He . Similar Rayleigh–Taylor Instability of Shock Fronts Perturbed by Corrugated Interfaces[J]. Chin. Phys. Lett., 2011, 28(5): 035201
[10] YU Xin, ZHAO Qiang. Nonlinear Shock and Kink Waves with Complete Coriolis Force in Earth's Atmosphere[J]. Chin. Phys. Lett., 2009, 26(3): 035201
[11] S. A. Khan, Q. Haque. Electrostatic Nonlinear Structures in Dissipative Electron--Positron--Ion Quantum Plasmas[J]. Chin. Phys. Lett., 2008, 25(12): 035201
[12] HE Yong, HU Xi-Wei, JIANG Zhong-He. Compressibility Effects on the Rayleigh--Taylor Instability Growth Rates[J]. Chin. Phys. Lett., 2008, 25(3): 035201
[13] JIANG Zhong-He, HE Yong, HU Xi-Wei, LV Jian-Hong, HU Ye-Min. Structures of Strong Shock Waves in Dense Plasmas[J]. Chin. Phys. Lett., 2007, 24(8): 035201
[14] LV Jian-Hong, HE Yong, HU Xi-Wei. Electrostatic Instabilities at High Frequency in a Plasma Shock Front[J]. Chin. Phys. Lett., 2007, 24(4): 035201
[15] HE Yong, HU Xi-Wei, HU Ye-Min. Jump Conditions of a Shock with Current in Cylindrical Non-Neutral Plasma[J]. Chin. Phys. Lett., 2006, 23(1): 035201
Viewed
Full text


Abstract