Chin. Phys. Lett.  2017, Vol. 34 Issue (3): 030301    DOI: 10.1088/0256-307X/34/3/030301
GENERAL |
Improving Accuracy of Estimating Two-Qubit States with Hedged Maximum Likelihood
Qi Yin1,2, Guo-Yong Xiang1,2**, Chuan-Feng Li1,2, Guang-Can Guo1,2
1Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026
Download: PDF(1622KB)   PDF(mobile)(1623KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As a widely used reconstruction algorithm in quantum state tomography, maximum likelihood estimation tends to assign a rank-deficient matrix, which decreases estimation accuracy for certain quantum states. Fortunately, hedged maximum likelihood estimation (HMLE) [Phys. Rev. Lett. 105 (2010) 200504] was proposed to avoid this problem. Here we study more details about this proposal in the two-qubit case and further improve its performance. We ameliorate the HMLE method by updating the hedging function based on the purity of the estimated state. Both performances of HMLE and ameliorated HMLE are demonstrated by numerical simulation and experimental implementation on the Werner states of polarization-entangled photons.
Received: 05 December 2016      Published: 21 March 2017
PACS:  03.67.-a (Quantum information)  
  03.65.Wj (State reconstruction, quantum tomography)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11574291, 61108009 and 61222504.
Issue Date: 21 March 2017
Cite this article:   
Qi Yin, Guo-Yong Xiang, Chuan-Feng Li et al  2017 Chin. Phys. Lett. 34 030301
URL:  
http://cpl.iphy.ac.cn/newweb/10.1088/0256-307X/34/3/030301       OR      http://cpl.iphy.ac.cn/newweb/Y2017/V34/I3/030301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi Yin
Guo-Yong Xiang
Chuan-Feng Li
Guang-Can Guo
[1]Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2]Li X, Li Z F, Shi Z L and Wang X Q 2014 Chin. Phys. Lett. 31 060301
[3]Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[4]Bent N, Qassim H, Tahir A A, Sych D, Leuchs G, Sánchez-Soto L L, Karimi and Boyd R W 2015 Phys. Rev. X 5 041006
[5]Häffner H et al 2005 Nature 438 643
[6]Steffen M, Ansmann M, Bialczak R C, Katz N, Lucero E, McDermott R, Neeley M, Weig E M, Cleland A N and Martinis J M 2006 Science 313 1423
[7]Huang Y F, Ren X F, Zhang Y S, Duan L M and Guo G C 2004 Phys. Rev. Lett. 93 240501
[8]Riebe M, Kim K, Schindler P, Monz T, Schmidt P O, Körber T K, Hänsel W, Häffner H, Roos C F and Blatt R 2006 Phys. Rev. Lett. 97 220407
[9]Kelly J et al 2015 Nature 519 66
[10]Adamson R B A and Steinberg A M 2010 Phys. Rev. Lett. 105 030406
[11]Mahler D H, Rozema L A, Darabi A and Ferrie C 2013 Phys. Rev. Lett. 111 183601
[12]Hou Z B, Zhu H J, Xiang G Y, Li C F and Guo G C 2016 npj Quantum Inf. 2 16001
[13]Hradil Z 1997 Phys. Rev. A 55 R1561
[14]James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
[15]Baumgratz T, Nüßeler A, Cramer M and Plenio M B 2013 New J. Phys. 15 125004
[16]Schack R, Brun T A and Caves C M 2001 Phys. Rev. A 64 014305
[17]Tanaka F and Komaki F 2005 Phys. Rev. A 71 052323
[18]Blume-Kohout R 2010 New J. Phys. 12 043034
[19]Qi B, Hou Z B, Li L, Dong D Y, Xiang G Y and Guo G C 2013 Sci. Rep. 3 3496
[20]Schumacher B 1995 Phys. Rev. A 51 2738
[21]Braunstein S L, Fuchs C A, Gottesman D and Hoi-Kwong Lo 2000 IEEE Trans. Inf. Theory 46 1644
[22]Blume-Kohout R 2010 Phys. Rev. Lett. 105 200504
[23]Lidstone G J 1920 Trans. Fac. Actuaries 8 182
[24]Ristad E S 1995 arXiv:cmp-lg/9508012
[25]Clarke B and Barron A 1994 J. Stat. Plann. Infer. 41 37
[26]Braess D, Forster J, Sauer T and Simon H U 2002 Lect. Notes Comput. Sci. 2533 153
[27]Kwiat P G, Waks E, White A G, Appelbaum I and Eberhard P H 1999 Phys. Rev. A 60 R773
Related articles from Frontiers Journals
[1] H. A. Zad. Total Pairwise Quantum Correlation and Entanglement in a Mixed-Three-Spin Ising-$XY$ Model with Added Dzyaloshinskii–Moriya Interaction under Decoherence[J]. Chin. Phys. Lett., 2016, 33(09): 030301
[2] Yan Li, Xiang-Jun Ye, Jing-Ling Chen. Nonlocality Distillation and Trivial Communication Complexity for High-Dimensional Systems[J]. Chin. Phys. Lett., 2016, 33(08): 030301
[3] Chao-Quan Wang, Jian Zou, Zhi-Ming Zhang. Generating Squeezed States of Nanomechanical Resonator via a Flux Qubit in a Hybrid System[J]. Chin. Phys. Lett., 2016, 33(02): 030301
[4] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 030301
[5] SUN Jun, SUN Yong-Nan, LI Chuan-Feng, GUO Guang-Can. On Delay of the Delayed Choice Experiment[J]. Chin. Phys. Lett., 2015, 32(09): 030301
[6] SONG Wei, HUANG Yi-Sheng, YANG Ming, CAO Zhuo-Liang. Motion-Enhanced Quantum Entanglement in the Dynamics of Excitation Transfer[J]. Chin. Phys. Lett., 2015, 32(08): 030301
[7] ZHANG Sheng-Li, WANG-Kun, GUO Jian-Sheng, SHI Jian-Hong. Fidelity Tradeoff in Estimation of Partial Entanglement State with Local Operation and Classic Communication[J]. Chin. Phys. Lett., 2015, 32(07): 030301
[8] TANG Shi-Qing, YUAN Ji-Bing, WANG Xin-Wen, KUANG Le-Man. Entanglement-Enhanced Two-Photon Delocalization in a Coupled-Cavity Array[J]. Chin. Phys. Lett., 2015, 32(4): 030301
[9] SUN Jie, LU Song-Feng, LIU Fang, ZHOU Qing, ZHANG Zhi-Gang. Adiabatic Deutsch–Jozsa Problem Solved by Modifying the Initial Hamiltonian[J]. Chin. Phys. Lett., 2014, 31(07): 030301
[10] LI Xin, LI Zhong-Fang, SHI Zhi-Long, WANG Xiao-Qin. Characteristics of Entanglement Wave in Two Parallel Spin Chains[J]. Chin. Phys. Lett., 2014, 31(06): 030301
[11] ZHANG Ye-Qi, HE Qi-Liang, HU Zheng-Da, LIU Ji-Cai. Quantum Dissonance as an Indicator of Quantum Phase Transition in the XXZ Chain[J]. Chin. Phys. Lett., 2014, 31(06): 030301
[12] LI Tan, BAO Wan-Su, LIN Wen-Qian, ZHANG Hou, FU Xiang-Qun. Quantum Search Algorithm Based on Multi-Phase[J]. Chin. Phys. Lett., 2014, 31(05): 030301
[13] SHANG Ru-Nan, LI Hai-Ou, CAO Gang, YU Guo-Dong, XIAO Ming, TU Tao, GUO Guo-Ping. Probing Energy Spectrum of Quadruple Quantum Dots with Microwave Field[J]. Chin. Phys. Lett., 2014, 31(05): 030301
[14] XU Zhen-Yu, ZHU Shi-Qun. Quantum Speed Limit of a Photon under Non-Markovian Dynamics[J]. Chin. Phys. Lett., 2014, 31(2): 030301
[15] WANG Xia, LIU Di, ZHANG Jun-Pei. Asymmetric Model of the Quantum Stackelberg Duopoly[J]. Chin. Phys. Lett., 2013, 30(12): 030301
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed