Chin.Phys.Lett.  2017, Vol. 34 Issue (3): 034206    DOI: 10.1088/0256-307X/34/3/034206
A High-Pulse-Energy High-Beam-Quality Tunable Ti:Sapphire Laser Using a Prism-Dispersion Cavity
Chang Xu1,2, Shi-Bo Dai2,4, Chuan Guo2,4, Qi Bian2,4, Jun-Wei Zuo2**, Yuan-Qin Xia1, Hong-Wei Gao2,3**, Zhi-Min Wang2,3, Yong Bo2,3, Nan Zong2,3, Sheng Zhang1, Qin-Jun Peng2,3, Zu-Yan Xu2,3
1National Key Lab of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080
2Key Lab of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
3Key Lab of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
4University of Chinese Academy of Sciences, Beijing 100049
Download: PDF(782KB)   PDF(mobile)(784KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740–855 nm is obtained. At an incident pump energy of 774 mJ, the maximum output energy of 104 mJ at 790 nm with a pulse width of 100 μs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, it is the highest pulse energy at 790 nm with pulse width of hundred micro-seconds for an all-solid-state laser. The linewidth of output is 0.5 nm, and the beam quality factor $M^{2}$ is 1.16. The high-pulse-energy high-beam-quality tunable Ti:sapphire laser in the range of 740–855 nm can be used to establish a more accurate and consistent absolute scale of second-order optical-nonlinear coefficients for KBe$_{2}$BO$_{3}$F$_{2}$ measured in a wider wavelength range and to assess Miller's rule quantitatively.
Received: 17 November 2016      Published: 20 March 2017
PACS:  42.55.Rz (Doped-insulator lasers and other solid state lasers)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.70.Mp (Nonlinear optical crystals)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61275157 and 61475040, the National Key Scientific Instrument and Equipment Development Project under Grant No 2012YQ120048, the National Development Project for Major Scientific Research Facility under Grant No ZDYZ2012-2, and the National Key Research and Development Program of China under Grant No 2016YFB0402003.
Issue Date: 20 March 2017
Cite this article:   
Chang Xu,Shi-Bo Dai,Chuan Guo et al  2017 Chin.Phys.Lett. 34 034206
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Chang Xu
Shi-Bo Dai
Chuan Guo
Qi Bian
Jun-Wei Zuo
Yuan-Qin Xia
Hong-Wei Gao
Zhi-Min Wang
Yong Bo
Nan Zong
Sheng Zhang
Qin-Jun Peng
Zu-Yan Xu
[1]Wang R et al 2012 Appl. Opt. 51 5527
[2]Ding X et al 2011 Chin. Phys. Lett. 28 094205
[3]Teng H et al 2012 Chin. Phys. Lett. 29 014209
[4]Meng J et al 2009 Nature 462 335
[5]Xie Z et al 2014 Nat. Commun. 5 3382
[6]Yang F et al 2009 Appl. Phys. B 96 415
[7]Xu Z et al 2014 IEEE Photon. Technol. Lett. 26 980
[8]Chen C 2004 Opt. Mater. 26 425
[9]Wang Z et al 2009 Opt. Express 17 20021
[10]Yang F et al 2010 Opt. Commun. 283 142
[11]Wang G et al 2008 Appl. Opt. 47 486
[12]Zhang H et al 2008 Appl. Phys. B 93 323
[13]Zhang X et al 2009 Opt. Lett. 34 1342
[14]Kanai T et al 2009 Opt. Express 17 8696
[15]Shoji I et al 1997 J. Opt. Soc. Am. B 14 2268
[16]Chen C T et al 2009 Appl. Phys. B 97 9
[17]Miller R C 1964 Appl. Phys. Lett. 5 17
[18]Shoji I et al 1999 J. Opt. Soc. Am. B 16 620
[19]Ruff J A and Siegman A E 1992 Appl. Opt. 31 4907
[20]ISO, 11146-1: ISO 2005 Test Methods for Laser Beam Widths, Divergence Angles and Beam Propagation Ratios. Part 1: Stigmatic and Simple Astigmatic Beams
[21]ISO, 11146-2: ISO 2005 Test Methods For Laser Beam Widths Divergence Angles Beam Propagation Ratios. Part 2: General Astigmatic Beams
Related articles from Frontiers Journals
[1] Bin Lin, Qiu-Lin Zhang , Dong-Xiang Zhang , Bao-Hua Feng, Jing-Liang He, Jing-Yuan Zhang. Passively Q-Switched Nd,Cr:YAG Laser Simultaneous Dual-Wavelength Operation at 946nm and 1.3µm[J]. Chin. Phys. Lett., 2016, 33(07): 034206
[2] Tong-Yu Dai, Xu-Guang Xu, Lin Ju, Jing Wu, Zhen-Guo Zhang, Bao-Quan Yao, Ye Zhang. Continuous-Wave and Actively Q-Switched Diode-Pumped Er:LuAG Ring Laser at 1650nm[J]. Chin. Phys. Lett., 2016, 33(06): 034206
[3] Jing Wu, You-Lun Ju, Tong-Yu Dai, Zhen-Guo Zhang, Bao-Quan Yao, Yue-Zhu Wang. Development of a Single-Longitudinal-Mode Ho:YAG Laser Based on Corner Cube[J]. Chin. Phys. Lett., 2016, 33(04): 034206
[4] Bao-Quan Yao, He Li, Xiao-Lei Li, Yi Chen, Xiao-Ming Duan, Shuang Bai, Hong-Yu Yang, Zheng Cui, Ying-Jie Shen, Tong-Yu Dai. An Actively Mode-Locked Ho:YAG Solid-Laser Pumped by a Tm-Doped Fiber Laser[J]. Chin. Phys. Lett., 2016, 33(04): 034206
[5] TIAN Zhao-Shuo, MIAO Jie-Guang, XU Zhi-Jing, QU Ting, FU Shi-You. Fully Immersing Water-Cooled Radial Slab Laser and its Incoherent Beam Combination[J]. Chin. Phys. Lett., 2015, 32(12): 034206
[6] DUAN Xiao-Ming, YUAN Jin-He, YAO Bao-Quan, DAI Tong-Yu, LI Jiang, PAN Yu-Bai. High-Power Dual-End-Pumped Actively Q-Switched Ho:YAG Ceramic Laser[J]. Chin. Phys. Lett., 2015, 32(10): 034206
[7] CUI Zheng, YAO Bao-Quan, DUAN Xiao-Ming, BAI Shuang, LI Jiang, YUAN Jin-He, DAI Tong-Yu, LI Chao-Yu, PAN Yu-Bai. Cr2+:ZnS Saturable Absorber Passively Q-Switched Ho:LuVO4 Laser[J]. Chin. Phys. Lett., 2015, 32(10): 034206
[8] YUAN Jin-He, DUAN Xiao-Ming, YAO Bao-Quan, LI Jiang, SHEN Ying-Jie, CUI Zheng, DAI Tong-Yu, PAN Yu-Bai. A Mid-IR Optical Parametric Oscillator Pumped by an Actively Q-Switched Ho:YAG Ceramic Laser[J]. Chin. Phys. Lett., 2015, 32(08): 034206
[9] CUI Zheng, YAO Bao-Quan, DUAN Xiao-Ming, LI Jiang, BAI Shuang, LI Xiao-Lei, ZHANG Ye, YUAN Jin-He, DAI Tong-Yu, JU You-Lun, LI Chao-Yu, PAN Yu-Bai. Experimental Study on a Passively Q-Switched Ho:YLF Laser with Polycrystalline Cr2+:ZnS as a Saturable Absorber[J]. Chin. Phys. Lett., 2015, 32(08): 034206
[10] WU Jing, JU You-Lun, DAI Tong-Yu, LIU Wei, YAO Bao-Quan, WANG Yue-Zhu. A Linearly Polarized Ho:YAG Laser at 2.09 µm with Corner Cube Cavity Pumped by Tm:YLF Laser[J]. Chin. Phys. Lett., 2015, 32(07): 034206
[11] CAI Wei-Yang, DUAN Yan-Min, LI Jiang-Tao, YAN Lin-Fei, MAO Meng-Jiao, ZHAO Bin, ZHU Hai-Yong. Diode-Pumped c-Cut Nd:Lu0.99La0.01VO4 Self-Stimulated Raman Laser at 1181 nm[J]. Chin. Phys. Lett., 2015, 32(03): 034206
[12] LI Xiao-Hong, CHEN Xiao-Wen, HAN Wen-Juan, KONG Wei-Jin, LIU Jun-Hai. Passive Q-Switching Laser Performance of Yb:YVO4 Crystal[J]. Chin. Phys. Lett., 2014, 31(12): 034206
[13] YUAN Jin-He, YAO Bao-Quan, DUAN Xiao-Ming, SHEN Ying-Jie, CUI Zheng, YU Kuai-Kuai, LI Jiang, PAN Yu-Bai. In-Band Pumped High Power Ho:YAG Ceramic Laser by a Tm:YLF Laser[J]. Chin. Phys. Lett., 2014, 31(12): 034206
[14] DENG Bo, ZHANG Heng-Li, XU Liu, MAO Ye-Fei, HE Jing-Liang, XIN Jian-Guo. High-Power Nd:GdVO4 Innoslab Continuous-Wave Laser under Direct 880 nm Pumping[J]. Chin. Phys. Lett., 2014, 31(11): 034206
[15] LU Ting-Ting, MA Jian, HUANG Min-Jie, YANG Qi, ZHU Xiao-Lei, CHEN Wei-Biao. High-Efficient Nd:YLF Q-Switched Laser Operating at 523.5 nm[J]. Chin. Phys. Lett., 2014, 31(07): 034206
Full text