Chin.Phys.Lett.  2017, Vol. 34 Issue (03): 037101    DOI: 10.1088/0256-307X/34/3/037101
Electronic Structure and Thermoelectric Power Factor of Na$_{x}$CoO$_{2}$ from First-Principles Calculation
Peng-Xian Lu1**, Rui-Xia Zhao2
1College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001
2Department of Civil Engineering and Architecture, Henan Technical College of Construction, Zhengzhou 450001
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To investigate the relationship between the electronic structure and the power factor of Na$_{x}$CoO$_{2}$ ($x=0.3$, 0.5 and 1.0), the first-principles calculation is conducted by using density functional theory and the semi-classical Boltzmann theory. Our results suggest that with the decreasing Na content, a transition from semiconductor to semimetal is observed. Na$_{0.3}$CoO$_{2}$ possesses a higher electrical conductivity at 1000 K due to its increased density of states near the Fermi energy level. However, an optimal Seebeck coefficient at 1000 K is obtained in Na$_{0.5}$CoO$_{2}$ because of its broadened band gap near the Fermi energy level. Consequently, a maximum power factor is realized in Na$_{0.5}$CoO$_{2}$. Thus our work provides a complete understanding of the relationship between the electronic structure and the thermoelectric power factor of Na$_{x}$CoO$_{2}$.
Received: 04 November 2016      Published: 14 March 2017
PACS:  71.20.Nr (Semiconductor compounds)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
Fund: Supported by the Science Foundation of Henan University of Technology under Grant No 2015XTCX10.
Issue Date: 14 March 2017
Cite this article:   
Peng-Xian Lu,Rui-Xia Zhao 2017 Chin.Phys.Lett. 34 037101
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Peng-Xian Lu
Rui-Xia Zhao
[1]Bell L E 2008 Science 321 1457
[2]Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[3]Takada K, Sakurai H, TakayamaMuromachi E, Izumi F, Dilanian R A and Sasaki T 2003 Nature 422 53
[4]Ito M, Nagira T, Oda Y, Katsuyama S, Majima K and Nagai H 2002 Mater. Trans. 43 601
[5]Seetawan T, Amornkitbamrung V, Burinprakhon T, Maensiri S, Tongbai P, Kurosaki K, Muta H, Uno M and Yamanaka S 2006 J. Alloys Compd. 416 291
[6]Peleckis G, Motohashi T and Karppinen M 2003 Appl. Phys. Lett. 83 5416
[7]Demchenko D O and Ameen D B 2014 Comput. Mater. Sci. 82 219
[8]Tomoya N, Mikio I, Shigeru K, Kazuhiko M and Hiroshi N 2003 J. Alloys Compd. 348 263
[9]Yakabe H, Fujita K, Nakamura K and Kikuchi K 1998 Int. Conf. Thermoelectrics (IEEE Service Center, Piscataway NJ United States, 24–28 May 1998) p 551
[10]Mrotzek A, Muller E, Plewa J and Altenburg H 2003 International Conference On-ict (IEEE Service Center, La Grande Motte France, 17–21 August 2003) p 219
[11]Tsai P H, Zhang T S, Donelson R, Tan T T and Li S 2011 J. Alloys Compd. 509 5183
[12]Voneshen D J, Refson K, Borissenko E, Krisch E, Bosak M, Piovano A, Cemal A, Enderle E, Gutmann M J and Hoesch M 2013 Nat. Mater. 12 1028
[13]Sun J and Guo Z P 2012 Intergrated Ferroelectrics 137 120
[14]Yoshiya M, Okabayashi T, Tada M and Fisher C A J 2010 J. Electron. Mater. 39 1681
[15]Jha P K, Troper A, Lima D C, Talatic I C and Sanyald S P 2005 Physica B 366 153
[16]Tosawat S, Athorn V U, Prasarn C, Chanchana T and Vittaya A 2010 Comput. Mater. Sci. 49 S225
[17]Lynn J W, Huang Q, Brown C M, Miller V L, Foo M L, Schaak R E, Jones C Y, Mackey E A and Cava R J 2003 Phys. Rev. B 68 214516
[18]Huang Q, Foo M L, Lynn J W, Zandbergen H W, Lawes G, Wang Y Y, Toby B H, Ramirez A P, Ong N P and Cava R J 2004 J. Phys.: Condens. Matter 16 5803
[19]Takahashi Y, Gotoh Y and Akimoto J 2003 J. Solid State Chem. 172 22
[20]Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[21]Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[22]Stiewe C, Bertini L, Toprak M, Christensen M, Platzek D, Williams S, Gatti C, Müller E, Iversen B B, Muhammed M and Rowe M 2005 J. Appl. Phys. 97 044317
[23]Kono Y, Ohya N, Taguchi T, Suekuni K, Takabatake T, Yamamoto S and Akai K 2010 J. Appl. Phys. 107 123720
[24]Goldsmid H J and Sharp J W 1999 J. Electron. Mater. 28 869
[25]Ziman J M 1972 Principles of the Theory of Solid (Cambridge: Cambridge University Press)
[26]Molenda J, Delmas C and Hagenmuller P 1983 Solid State Ionics 9 431
Related articles from Frontiers Journals
[1] De-Gang Zhao, De-Sheng Jiang, Ling-Cong Le, Jing Yang, Ping Chen, Zong-Shun Liu, Jian-Jun Zhu, Li-Qun Zhang. Performance Improvement of GaN-Based Violet Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(01): 037101
[2] A. Stashans, K. Rivera. Electronic and Magnetic Properties of Co- and Mn-codoped ZnO by Density Functional Theory[J]. Chin. Phys. Lett., 2016, 33(09): 037101
[3] SHEN Hua-Jun, TANG Ya-Chao, PENG Zhao-Yang, DENG Xiao-Chuan, BAI Yun, WANG Yi-Yu, LI Cheng-Zhan, LIU Ke-An, LIU Xin-Yu. Fabrication and Characterization of 1700 V 4H-SiC Vertical Double-Implanted Metal-Oxide-Semiconductor Field-Effect Transistors[J]. Chin. Phys. Lett., 2015, 32(12): 037101
[4] CHENG Fang, REN Yi, SUN Jin-Fang. Transport through a Single Barrier on Monolayer MoS2[J]. Chin. Phys. Lett., 2015, 32(10): 037101
[5] ZHOU Shu-Xing, QI Ming, AI Li-Kun, XU An-Huai, WANG Li-Dan, DING Peng, JIN Zhi. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures[J]. Chin. Phys. Lett., 2015, 32(09): 037101
[6] XU Ying, LI Fei, SHENG Wei, NIE Guo-Zheng, YUAN Ding-Wang. The Electronic Structure and Formation Energies of Ni-doped CuAlO2 by Density Functional Theory Calculation[J]. Chin. Phys. Lett., 2014, 31(03): 037101
[7] HUANG Duo-Hui, YANG Jun-Sheng, CAO Qi-Long, WAN Ming-Jie, LI Qiang, SUN Liang, WANG Fan-Hou. Effect of Mg and Fe Doping on Optical Absorption of LiNbO3 Crystal through First Principles Calculations[J]. Chin. Phys. Lett., 2014, 31(03): 037101
[8] ZHANG Li-Ning, MEI Jin-He, ZHANG Xiang-Yu, TAO Jin, HU Yue, HE Jin, CHAN Mansun. A Comparative Study of Ballistic Transport Models for Nanowire MOSFETs[J]. Chin. Phys. Lett., 2013, 30(11): 037101
[9] LING Zhi-Yuan, HE Lin. Thick-Film Negative-Temperature-Coefficient Thermistors with a Linear Resistance-Temperature Relation[J]. Chin. Phys. Lett., 2013, 30(10): 037101
[10] DONG Lin, SUN Guo-Sheng, YU Jun, ZHENG Liu, LIU Xing-Fang, ZHANG Feng, YAN Guo-Guo, LI Xi-Guang, WANG Zhan-Guo, YANG Fei. Characterization of Obtuse Triangular Defects on 4H-SiC 4° off-Axis Epitaxial Wafers[J]. Chin. Phys. Lett., 2013, 30(9): 037101
[11] CHEN Dan-Yang, WANG Li, XIONG Chuan-Bing, ZHENG Chang-Da, MO Chun-Lan, JIANG Feng-Yi. Stress Distribution in GaN Films grown on Patterned Si (111) Substrates and Its Effect on LED Performance[J]. Chin. Phys. Lett., 2013, 30(9): 037101
[12] ZHAO Chuan-Zhen,ZHANG Rong , LIU Bin, LI Ming, XIU Xiang-Qian, XIE Zi-Li, ZHENG You-Dou. A Band-Gap Energy Model of the Quaternary Alloy InxGayAl1−x−yN using Modified Simplified Coherent Potential Approximation[J]. Chin. Phys. Lett., 2013, 30(7): 037101
[13] YAO Gang, CHEN Yu, AN Xin-You, JIANG Zhong-Qian, CAO Lin-Hong, WU Wei-Dong, ZHAO Yan . First-Principles Study of the Structural, Electronic and Optical Properties of Hexagonal LiIO3[J]. Chin. Phys. Lett., 2013, 30(6): 037101
[14] MA Ji-Zhao, DONG Ke-Xiu, CHEN Dun-Jun, LU Hai, CHEN Peng, ZHANG Rong, ZHENG You-Dou. The Effects of Polarization on the Current Transport Mechanisms for UV-LEDs[J]. Chin. Phys. Lett., 2013, 30(6): 037101
[15] XU Pei-Qiang, JIANG Yang, MA Zi-Guang, DENG Zhen, LU Tai-Ping, DU Chun-Hua, FANG Yu-Tao, ZUO Peng, CHEN Hong. The Influence of Graded AlGaN Buffer Thickness for Crack-Free GaN on Si(111) Substrates by using MOCVD[J]. Chin. Phys. Lett., 2013, 30(2): 037101
Full text