Chin.Phys.Lett.  2017, Vol. 34 Issue (03): 036301    DOI: 10.1088/0256-307X/34/3/036301
Topological Phonon Modes in a Two-Dimensional Wigner Crystal
Wen-Cheng Ji1, Jun-Ren Shi1,2**
1International Center for Quantum Materials, Peking University, Beijing 100871
2Collaborative Innovation Center of Quantum Matter, Beijing 100871
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the spin–orbit coupling effect in a two-dimensional (2D) Wigner crystal. It is shown that sufficiently strong spin–orbit coupling and an appropriate sign of $g$-factor could transform the Wigner crystal to a topological phonon system. We demonstrate the existence of chiral phonon edge modes in finite size samples, as well as the robustness of the modes in the topological phase. We explore the possibility of realizing the topological phonon system in 2D Wigner crystals confined in semiconductor quantum wells/heterostructure. It is found that the spin–orbit coupling is too weak for driving a topological phase transition in these systems. It is argued that one may look for topological phonon systems in correlated Wigner crystals with emergent effective spin–orbit coupling.
Received: 09 December 2016      Published: 14 March 2017
PACS:  63.20.-e (Phonons in crystal lattices)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
Fund: Supported by the National Basic Research Program of China under Grant No 2015CB921101, and the National Natural Science Foundation of China under Grant No 11325416.
Issue Date: 14 March 2017
Cite this article:   
Wen-Cheng Ji,Jun-Ren Shi 2017 Chin.Phys.Lett. 34 036301
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Wen-Cheng Ji
Jun-Ren Shi
[1]Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[2]Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[3]Bernevig B A et al 2006 Science 314 1757
[4]K鰊ig M et al 2007 Science 318 766
[5]Prodan E and Prodan C 2009 Phys. Rev. Lett. 103 248101
[6]Zhang L et al 2010 Phys. Rev. Lett. 105 225901
[7]Berg N et al 2011 Phys. Rev. E 83 021913
[8]Qin T et al 2012 Phys. Rev. B 86 104305
[9]Strohm C et al 2005 Phys. Rev. Lett. 95 155901
[10]Inyushkin A V and Taldenkov A N 2007 JETP Lett. 86 379
[11]Monarkha Yu P and Syvokon V E 2012 Low Temp. Phys. 38 1067
[12]Ando T et al 1982 Rev. Mod. Phys. 54 437
[13]Tanatar B and Ceperley D M 1989 Phys. Rev. B 39 5005
[14]Attaccalite C et al 2002 Phys. Rev. Lett. 88 256601
[15]Drummond N D and Needs R J 2009 Phys. Rev. Lett. 102 126402
[16]Yoon J et al 1999 Phys. Rev. Lett. 82 1744
[17]Winkler R 2010 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer)
[18]Bonsall L and Maradudin A A 1977 Phys. Rev. B 15 1959
[19]Fukuyama H et al 1979 Phys. Rev. B 19 5211
[20]Maki K and Zotos X 1983 Phys. Rev. B 28 4349
[21]Zhu H et al 2010 Phys. Rev. Lett. 105 126803
[22]Archer A C et al 2013 Phys. Rev. Lett. 111 146804
Related articles from Frontiers Journals
[1] LIU Yue-Feng, WANG Bei, ZHENG Hai-Wu, LIU Xiang-Yang, GU Yu-Zong, ZHANG Wei-Feng. Temperature-Dependent Raman Spectrum of Hexagonal YMnO3 Films Synthesized by Chemical Solution Method[J]. Chin. Phys. Lett., 2010, 27(5): 036301
[2] TAN Da-Yong, XIAO Wan-Sheng, ZHOU Wen-Ge, SONG Mao-Shuang, XIONG Xiao-Lin, CHEN Ming. Raman Investigation of BaWO4-II Phase under Hydrostatic Pressures up to 14.8GPa[J]. Chin. Phys. Lett., 2009, 26(4): 036301
[3] FAN Hong-Yi, WANG Tong-Tong, HU Li-Yun. Normally Ordered Bivariate-Normal-Distribution Forms of Two-Mode Mixed States with Entanglement Involved[J]. Chin. Phys. Lett., 2008, 25(10): 036301
[4] FANG Nong-Yu, WU Fu-Gen, ZHANG Xin. Acoustic Band Gaps in Three-Dimensional NaCl-Type Acoustic Crystals[J]. Chin. Phys. Lett., 2008, 25(8): 036301
[5] LIU Zheng-Bo, DONG Shun-Le, WANG Lin. Lattice Dynamical Simulation of Guest-Host Interaction in N2 Clathrate Hydrate[J]. Chin. Phys. Lett., 2008, 25(7): 036301
[6] Aditya M. Vora. Modified Transition Temperature Equation for Superconductors[J]. Chin. Phys. Lett., 2008, 25(6): 036301
[7] Aditya M. Vora. Phonon Dispersion in Equiatomic Li-Based Binary Alloys[J]. Chin. Phys. Lett., 2008, 25(2): 036301
[8] PAN Xin-Yu, WANG Shu-Feng, HUANG Wen-Tao, YANG Hong, LI Xia, JIANG Hong-Bing, GONG Qi-Huang. Coherent Phonon Detection in Ge with a Femtosecond Laser [J]. Chin. Phys. Lett., 2001, 18(7): 036301
[9] YANG Ai-Ling, WU Hui-Zhen, LI Zhi-Feng, QIU Dong-Jiang, CHANG Yong, LI Jian-Feng, P. J. McCann, X. M. Fang. Raman Scattering Study of PbSe Grown on (111) BaF2 Substrate[J]. Chin. Phys. Lett., 2000, 17(8): 036301
[10] ZHANG Yong-hong, HUANG Shi-ping. Molecular Dynamics Simulation Study of MgO Crystal[J]. Chin. Phys. Lett., 1999, 16(4): 036301
[11] QIAN Wei, YAN Hong, WANG Jing-jing, ZOU Ying-hua, LIN Lin, WU Jin-lei. Coherent Phonons in Ag-BaO Thin Films[J]. Chin. Phys. Lett., 1998, 15(11): 036301
[12] GU Bing-lin, DUAN Wen-hui, XIONG Shi-ying. Optical Interface Phonon in Thin Layer Inserted Quantum Well Structure[J]. Chin. Phys. Lett., 1996, 13(10): 036301
[13] HONG Shuili, WU Bochang*. Space Group Analysis of the phonon Symmetry and Study of the Raman Spectra for β-BaB2O4 [J]. Chin. Phys. Lett., 1995, 12(6): 036301
[14] XIA Yueyuan, TAN Chunyu, XING Yuelin, YANG Hong*, SUN Xiufang*, GONG Bin*. Molecular-Dynamics Simulation of Surface Relaxation for Tersoff-Dodson Type (100) Si[J]. Chin. Phys. Lett., 1994, 11(12): 036301
[15] CHEN Luwei, CHEN Chuanhong. Lattice Dynamics of β-Si3N4[J]. Chin. Phys. Lett., 1994, 11(5): 036301
Full text