Chin.Phys.Lett.  2017, Vol. 34 Issue (03): 034211    DOI: 10.1088/0256-307X/34/3/034211
Interference from Two-Photon Sources in Silica-on-Silicon Circuits at Telecom Wavelength
Xing-Yun Li, Lu Qin, Jia-Shun Zhang, Mei-Zhen Ren, Jun-Ming An, Xiao-Hong Yang, Xing-Sheng Xu**
State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Download: PDF(0KB)   PDF(mobile)(KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The integrated photonic chip is a promising way to realize future quantum technology. Here we demonstrate a two-photon interference in the standard telecommunication band on a silica-on-silicon integrated photonic chip. Two identical photons in the 1.55 μm band, which are indistinguishable in spatial, frequency and polarization, are generated by type-I collinear spontaneous parametric down-conversion via bismuth borate. The silica-on-silicon integrated chip, which has an insertion loss less than 1 dB, is a Mach–Zehnder interferometer with a thermo-optic phase shifter. A high visibility of 100% in the classical interference and 99.2% in the two-photon interference is achieved, indicating that the two-photon interference with high interference visibility on the chip is attained successfully.
Received: 27 October 2016      Published: 07 March 2017
Fund:Supported by the National Natural Science Foundation of China under Grant Nos 61627820, 61575191 and 61275045, and the National Basic Research Program of China under Grant Nos 2016YFA0301200, 2013CB632105.
Issue Date: 07 March 2017
Cite this article:   
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
[1]Gisin N and Thew R T 2010 Electron. Lett. 46 965
[2]Thompson M et al 2011 IET Circ. Dev. Syst. 5 94
[3]Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044
[4]Rosfjord K M et al 2006 Opt. Express 14 527
[5]Chen J R, Zhang W, Zhou Q et al 2010 Chin. Phys. Lett. 27 124208
[6]Wang P X, Zhou Q, Zhang W et al 2012 Chin. Phys. Lett. 29 054215
[7]Peruzzo A, Lobino M, Matthews J C et al 2010 Science 329 1500
[8]Matthews J C F, Politi A, Bonneau D et al 2011 Phys. Rev. Lett. 107 163602
[9]Politi A, Cryan M J, Rarity J G et al 2008 Science 320 646
[10]Carolan J, Harrold C, Sparrow C et al 2015 Science 349 711
[11]Silverstone J W, Bonneau D, Ohira K et al 2013 Nat. Photon. 8 104
[12]Bonneau D, Engin E, Ohira K et al 2012 New J. Phys. 14 045003
[13]Zhang Y, McKnight L, Engin E et al 2011 Appl. Phys. Lett. 99 161119
[14]Matthews J C F, Politi A, Stefanov A et al 2009 Nat. Photon. 3 346
[15]Poulios K, Fry D, Politi A et al 2013 Opt. Express 21 23401
[16]Laing A, Peruzzo A, Politi A et al 2010 Appl. Phys. Lett. 97 211109
[17]Marshall G D, Politi A, Matthews J C F et al 2009 Opt. Express 17 12546
[18]Li X Y, Yang L, Cui L et al 2008 Opt. Lett. 33 593
[19]Yang L 2011 Acta Phys. Sin. 60 2509 (in Chinese)
[20]Yang L, Ma X X, Cui L et al 2011 Acta Phys. Sin. 60 308 (in Chinese)
[21]Rarity J G, Tapster P R, Jakeman E et al 1990 Phys. Rev. Lett. 65 1348
[22]Yuan P, Wu Y D, Wang Y et al 2015 J. Semicond. 36 084005
[23]Zhang L M, Lu D, Li Z S et al 2016 J. Semicond. 37 124005
[24]Bonneau D, Lobino M, Jiang P et al 2012 Phys. Rev. Lett. 108 053601
[25]Noh T G, Kim H, Youn C et al 2006 Opt. Express 14 2805
[26]Cho S B and Noh T G 2007 Opt. Express 15 7591
[27]Huo G, Zhang T, Wan R et al 2013 Optik 124 6627
[28]Huo G, Wang Y and Zhang M 2015 Appl. Phys. B 120 239
[29]Zhang M and Huo G 2014 Opt. Eng. 53 086105
Full text