Chin.Phys.Lett.  2016, Vol. 42 Issue (4): 01009    DOI: 10.13336/j.1003-6520.hve.20160405010
Special Issue for the 60th Anniversary of High Voltage Department of Xi'an Jiaotong University |
Research Progress in Electrical Explosion Shockwave Technology for Developing Fossil Energy
ZHANG Yongmin1, 2, QIU Aici1, 2, ZHOU Haibin1, LIU Qiaojue1, TANG Junping2, LIU Meijuan3
1. State Key Laboratory of Electrical Insulation for Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China;
2. State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an 710024, China;
3. Xi’an Guantong Energy Technology Limited Company, Xi’an 710065, China
Download: PDF(167422 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We evaluated the limitations of reservoir reform technology in fossil energy development, and proposed a novel reservoir stimulation technology based on repetitive strong shock waves caused by pulsed discharge.Meanwhile, we analyzed the principles of the three kinds of shock wave generation technologies, i.e., underwear pulsed discharge, underwater electrical wire explosion, and plasma-ignited energetic materials.Moreover, we discussed the influential mechanisms of the shock waves on reservoir and results of recent industrial applications, and proved the technical feasibility by theoretical calculations, laboratory experiments, and several related practices. It is concluded that plasma-ignited energetic materials may be utilized to produce stronger and controllable shock waves, helping to enhance the effects of reservoir stimulation.
Keywords pulsed power technology      plasma      electrical explosion      shock wave      energetic material      reservoir stimulation      energy development     
Received: 15 February 2016      Published: 13 January 2017
Fund:; Project supported by National High-tech Research and Development Program of China (863 Program)(2013AA064502), National Basic Research Program of China (973 Program) (2013CB228004)
Issue Date: 13 January 2017
Cite this article:   
URL:  
http://cpl.iphy.ac.cn/newweb/10.13336/j.1003-6520.hve.20160405010       OR      http://cpl.iphy.ac.cn/newweb/Y2016/V42/I4/ 01009
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] 邱爱慈,张永民,蒯 斌,等. 高功率脉冲技术在非常规天然气开发中应用的设想[C]∥第二届中国工程院/国家能源局能源论坛论文集. 北京:煤炭工业出版社,2012:1112-1115. QIU Aici, ZHANG Yongmin, KUAI Bin, et al . Application of high power pulse technology in unconventional gas development[C]∥Proceeding for 2012 CAE/NEA Energy Forum. Beijing, China: Coal Industry Press, 2012: 1112-1115.
[2] 邱爱慈,曾正中,张乔根,等. 中国电气工程大典,第7篇,脉冲功率技术基础[D]. 北京:中国电力出版社,2009. QIU Aici,ZENG Zhengzhong, ZHANG Qiaogen, et al . Chinese electrical engineering canon, chapter 7, pulsed power technology foundation[D]. Beijing, China: China Electric Power Press, 2009.
[3] 王一博. 水中等离子体声源的理论与实验研究[D]. 长沙: 国防科学技术大学,2012. WANG Yibo. Theoretical and experimental study of the underwater plasma acoustic source[D]. Changsha, China: National University of Defense Technology, 2012.
[4] 陈景秋,韦春霞,邓 艇,等. 体外冲击波碎石技术的力学机理的研究[J]. 力学进展,2007,37(4):590-600. CHEN Jingqiu, WEI Chunxia, DENG Ting, et al . Studies on mechanical mechanism about stone comminution and tissue trauma in extra corporeal shock wave lithotripsy[J]. Advances in Mechanics, 2007, 37(4): 590-600.
[5] 张 雷. 液电加工原理及其应用[J]. 机械,1999,26(4):48-50. ZHANG Lei. Electrohydraulic machining technology and its application[J]. Mechanics, 1999, 26(4): 48-50.
[6] 王先荣,袁艳勤,杜海涛,等. 冲击波解堵技术在中、低渗透油藏中的应用[J]. 海洋石油,2005,25(2):68-71. WANG Xianrong, YUAN Yanqin, DU Haitao, et al . Application of shock wave plug-removing measure in low-mid permeability reservoir[J]. Offshore Oil, 2005, 25(2): 68-71.
[7] Ushakov V Y, Klimkin V F V C, Korobeynikov S M. Impulse breakdown of liquids[M]. Tomsk, Russia: Springer Science and Business Media, 2007.
[8] Maurel O, Reess T, Matallah M, et al . Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar[J]. Cement and Concrete Research, 2010, 40(12): 1631-1638.
[9] Chen W, Maurel O, Reess T, et al . Experimental study on an alternative oil stimulation technique for tight gas reservoirs based on dynamic shock waves generated by pulsed arc electrohydraulic discharges[J]. Journal of Petroleum Science and Engineering, 2012(88/89): 67-74.
[10] 秦曾衍. 高压强脉冲放电及其应用[M]. 北京:北京工业大学岀版社,2000. QIN Zengyan. High voltage pulse discharge and its application[M]. Beijing, China: Beijing University of Technology Press, 2000.
[11] 卢新培,潘 垣,张寒虹. 水中脉冲放电的电特性与声辐射特性研究[J]. 物理学报,2002,51(7):1549-1553. LU Xinpei, PAN Yuan, ZHANG Hanhong. The electrical and acoustical characteristics of pulsed discharge in water[J]. Acta Physica Sinica, 2002, 51(7): 1549-1553.
[12] 卢新培,潘 垣,张寒虹,等. 水中脉冲放电等离子体通道特性及气泡破裂过程[J]. 物理学报,2002,51(8):1768-1772. LU Xinpei, PAN Yuan, ZHANG Hanhong, et al . A study on the characteristic of plasma and bubble break process of pulsed discharge in water [J]. Acta Physica Sinica, 2002, 51(8): 1768-1772.
[13] 卢新培. 液电脉冲等离子体的理论与实验研究[D]. 武汉:华中科技大学,2001. LU Xinpei. Theoretial and experimental research on electrohydralic pulse plasma[D]. Wuhan, China: Huazhong University of Science and Technology, 2001.
[14] 章志成. 高压脉冲放电破碎岩石及钻井装备研制[D]. 杭州:浙江大学,2013. ZHANG Zhicheng. Rock fragmentation by pulsed high voltage discharge and drilling equipment development[D]. Hangzhou, China: Zhejiang University, 2013.
[15] 张春喜. 水中丝爆引发的推进效应[D]. 哈尔滨:哈尔滨理工大学,2005. ZHANG Chunxi. The propulsion effect caused by exploding wire in water[D]. Harbin, China: Harbin University of Science and Technology, 2005.
[16] 孙凤举,曾正中,邱毓昌,等. 一种用于油水井解堵的脉冲大电流源[J]. 高电压技术,1999,25(2):47-49. SUN Fengju, ZENG Zhengzhong, QIU Yuchang, et al . Pulse high current power supply used for dredging oil and water wells[J]. High Voltage Engineering, 1999, 25(2): 47-49.
[17] Hatfield L L, Kristiansen M, Lojewski D. High voltage water breakdown studies, DSWA-TR-97-30[R]. Lubbock, Germany: Pulsed Power Lab, Texas Tech University, 1998.
[18] Zhou H, Han R, Liu Q, et al . Generation of electrohydraulic shock waves by plasma-ignited energetic materials: II. influence of wire configuration and stored energy[J]. IEEE Transactions on Plasma Science, 2015,43 (12): 4009-4016.
[19] Efimov S, Gurovich V T, Bazalitski G, et al . Addressing the efficiency of the energy transfer to the water flow by underwater electrical wire explosion[J]. Journal of Applied Physics, 2009, 106(7): 73308.
[20] S?unka P. Pulse electrical discharges in water and their applications[J]. Physics of Plasmas, 2001,8(5): 2587.
[21] Krasik Y E, Grinenko A, Sayapin A, et al . Underwater electrical wire explosion and its applications[J]. IEEE Transactions on Plasma Science, 2008, 36 (2): 423-434.
[22] Krasik Y E, Fedotov A, Sheftman D, et al . Underwater electrical wire explosion[J]. Plasma Sources Science & Technology, 2010, 19(3): 951-956.
[23] Grinenko A, Gurovich V T, Krasik Y E, et al . Analysis of shock wave measurements in water by a piezoelectric pressure probe [J]. Review of Scientific Instruments, 2004, 75(1): 240.
[24] Pikuz S A, Tkachenko S I, Romanova V M, et al . Maximum energy deposition during resistive stage and overvoltage at current driven nanosecond wire explosion[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 2330-2335.
[25] Oshita D, Hosseini S H R, Miyamoto Y, et al . Study of underwater shock waves and cavitation bubbles generated by pulsed electric discharges[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20 (4): 1273-1278.
[26] 周海滨,韩若愚,吴佳玮,等. 水中铜丝电爆炸放电通道模型及仿真[J]. 高电压技术,2015,41(9):2943-2949. ZHOU Haibin, HAN Ruoyu, WU Jiawei, et al . Model and simulation study of discharge channel during underwater Cu wire explosion[J]. High Voltage Engineering, 2015, 41(9): 2943-2949.
[27] Han R, Zhou H, Liu Q, et al . Generation of electrohydraulic shock waves by plasma-ignited energetic materials: I. fundamental mechanisms and processes[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 3999-4008.
[28] Zhou H, Zhang Y, Li H, et al . Generation of electrohydraulic shock waves by plasma-ignited energetic materials: III. shock wave characteristics with three discharge loads[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4017-4023.
[29] 李兴文,晁攸闯,吴 坚,等. 水中金属丝电爆炸冲击波一维数值模拟[J]. 西安交通大学学报,2015,49(4):1-5, 52. LI Xingwen, CHAO Youchuang, WU Jian, et al . One-dimensional simulation for shock waves generated by underwater electrical wire explosion [J]. Journal of Xi’an Jiaotong University, 2015, 49 (4): 1-5, 52.
[30] 晁攸闯,韩若愚,李兴文,等. 水中电爆炸放电通道特性0维数值模拟[J]. 高电压技术,2014,40(10):3112-3118. CHAO Youchuang, HAN Ruoyu, LI Xingwen, et al . Zero-dimen- sional simulation of discharge channel properties during underwater electrical wire explosion[J]. High Voltage Engineering, 2014,40 (10): 3112-3118.
[31] Liu Q, Ding W, Zhou H, et al . A novel strain measurement system in strong electromagnetic field[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3562-3567.
[32] Li X, Chao Y, Wu J, et al . Study of the shock waves characteristics generated by underwater electrical wire explosion[J]. Journal of Applied Physics, 2015, 118(2): 23301.
[33] 吴佳玮,丁卫东,韩若愚,等. 密封腔体、大电流条件下重复频率长寿命气体开关的烧蚀特性[J]. 高电压技术,2014,40(10):3235-3242. WU Jiawei, DING Weidong, HAN ruoyu, et al . Electrode erosion of repetitive long-life gas spark switch with large current load in airtight chamber [J]. High Voltage Engineering, 2014, 40(10): 3235-3242.
[34] 彭亚晶,叶玉清. 含能材料起爆过程“热点”理论研究进展[J]. 化学通报,2015,78(8):693-701. PENG Yajing, YE Yuqing. Research progress of ‘hot-spot’ theory in energetic materials initiation [J]. Chemistry, 2015, 78(8): 693-701.
[35] Pagoria P F, Lee G S, Mitchell A R, et al . A review of energetic materials synthesis[J]. Thermochimica Acta, 2002, 384(1):187-204.
[36] 吴腾芳,丁 文,李裕春,等. 爆破材料与起爆技术[M]. 北京:国防工业出版社,2008. WU Tengfang, DING Wen, LI Yuchun, et al . Blasting materials and blasting technique[M]. Beijing, China: National Defence Industry Press, 2008.
[37] Bourne N K, Milne A M. The temperature of a shock-collapsed cavity[C]∥Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. [S.l.]: [s.n.], 2003: 1851-1861.
[38] Mader C L. Initiation of detonation by the interaction of shocks with density discontinuities[J]. Physics of Fluids (1958-1988), 1965, 8(10): 1811-1816.
[39] Cai Y, Zhao F, An Q, et al . Shock response of single crystal and nanocrystalline pentaerythritol tetranitrate: Implications to hotspot formation in energetic materials[J]. The Journal of Chemical Physics, 2013, 139(16): 164704.
[40] Yu C, Pandolfi A, Ortiz M, et al . Three-dimensional modeling of intersonic shear-crack growth in asymmetrically loaded unidirectional composite plates[J]. International Journal of Solids and Structures, 2002, 39(25): 6135-6157.
[41] Robert A G. 固体的冲击波压缩[M]. 北京:科学出版社,2010. Robert A G. Solid under high-pressure shock compression[M]. Beijing, China: Science Press, 2010.
[42] Tucker T J. Explosive initiators[R]. Albuquerque, New Mexico, USA: Proceedings of the 12 th Annual Symposium of the New Mexico Section of the ASME, 1972.
[43] Varosh R. Electric detonators: EBW and EFI[J]. Propellants, Explosives, Pyrotechnics, 1996, 21(3): 150-154.
[44] Taylor M J. Plasma propellant interactions in an electrothermal-chemical gun[D]. Cranfield, Bedfordshire, UK: Cranfield University, 2002.
[45] Porwitzky A J, Keidar M, Boyd I D. Modeling of the plasma-propellant interaction[J]. IEEE Transactions on Magnetics, 2007, 43(1): 313-337.
[46] Kappen K, Bauder U H. Calculation of plasma radiation transport for description of propellant ignition and simulation of interior ballistics in ETC guns[J]. IEEE Transactions on Magnetics, 2001, 37(1):169-172.
[47] Efimov S, Gilburd L, Fedotov G A, et al . Aluminum micro-particles combustion ignited by underwater electrical wire explosion[J]. Shock Waves, 2012, 22(3): 207-14.
[48] 张小兵,袁亚雄,陈 键,等. 含能材料等离子体点火过程的数值模拟[J]. 南京理工大学学报,2004,28(3):295-298. ZHANG Xiaobing, YUAN Yaxiong, CHEN Jian, et al . Numerical simulation of plasma ignition of energetic materials[J]. Journal of Nanjing University of Science and Technology, 2004, 28(3): 295-298.
[49] Li X, Li R, Jia S, et al . Interaction features of different propellants under plasma impingement[J]. Journal of Applied Physics, 2012, 112(6): 3303-10.
[50] Xingwen L, Li R, Shenli J, et al . Study on the characteristics of different plasma ignition schemes[J]. IEEE Transactions on Plasma Science, 2013, 41(1): 214-8.
[51] (苏)瓦希托夫. 利用物理场从地层中开采石油[M]. 北京:石油工业出版社,1993. Вахитов Г Г. Gas exploitation in stratum by using physical field [M]. Beijing, China:Petroleum Industry Press, 1993.
[52] 姜永东,鲜学福,易 俊,等. 声震法促进煤中甲烷气解吸规律的 实验及机理[J]. 煤炭学报,2008,33(6):675-680. JIANG Yongdong, XIAN Xuefu, YI Jun, et al . Experimental and mechanical on the features of ultrasonic vibration stimulating the desorption of methane in coal[J]. Journal of China Coal Society, 2008, 33(6): 675-680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed