Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 018502    DOI: 10.1088/0256-307X/34/1/018502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions
Yin Tang1, Qing Cai1, Lian-Hong Yang2, Ke-Xiu Dong3, Dun-Jun Chen1**, Hai Lu1, Rong Zhang1, You-Dou Zheng1
1Key Laboratory of Advanced Photonic and Electronic Materials, School of electronic Science and Engineering, Nanjing University, Nanjing 210093
2Department of Physics, Changji College, Changji 831100
3School of Mechanical and Electronic Engineering, Chuzhou University, Chuzhou 239000
Cite this article:   
Yin Tang, Qing Cai, Lian-Hong Yang et al  2017 Chin. Phys. Lett. 34 018502
Download: PDF(459KB)   PDF(mobile)(454KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is well known that III-nitride semiconductors can generate the magnitude of MV/cm polarization electric field which is comparable with their ionization electric fields. To take full advantage of the polarization electric field, we design an N-face AlGaN solar-blind avalanche photodiode (APD) with an Al$_{0.45}$Ga$_{0.55}$N/Al$_{0.3}$Ga$_{0.7}$N heterostructure as separate absorption and multiplication (SAM) regions. The simulation results show that the N-face APDs are more beneficial to improving the avalanche gain and reducing the avalanche breakdown voltage compared with the Ga-face APDs due to the effect of the polarization electric field. Furthermore, the Al$_{0.45}$Ga$_{0.55}$N/Al$_{0.3}$Ga$_{0.7}$N heterostructure SAM regions used in APDs instead of homogeneous Al$_{0.45}$Ga$_{0.55}$N SAM structure can increase significantly avalanche gain because of the increased hole ionization coefficient by using the relatively low Al-content AlGaN in the multiplication region. Meanwhile, a quarter-wave AlGaN/AlN distributed Bragg reflector structure at the bottom of the device is designed to remain a solar-blind characteristic of the heterostructure SAM-APDs.
Received: 17 September 2016      Published: 29 December 2016
PACS:  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
Fund: Supported by the State Key Project of Research and Development Plan of China under Grant No 2016YFB0400903, the National Natural Science Foundation of China under Grant Nos 61634002, 61274075 and 61474060, the Key Project of Jiangsu Province under Grant No BE2016174, the Anhui University Natural Science Research Project under Grant No KJ2015A153, and the Open Fund of State KeyLab of Optical Technologies on Nano-fabrication and Micro-engineering.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/018502       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/018502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yin Tang
Qing Cai
Lian-Hong Yang
Ke-Xiu Dong
Dun-Jun Chen
Hai Lu
Rong Zhang
You-Dou Zheng
[1]Yoo D, Limb J, Ryou J, Zhang Y, Shen S, Dupuis R, Hanser D, Preble E and Evans K 2007 IEEE Photon. Technol. Lett. 19 1313
[2]Huang Y, Chen D J, Lu H, Dong K X, Zhang R, Zheng Y D, Li L and Li Z H 2012 Appl. Phys. Lett. 101 253516
[3]Wang X D, Hu W D, Pan M, Hou L W, Xie W, Xu J T, Li X Y, Chen X S and Lu W 2014 J. Appl. Phys. 115 013103
[4]Shao Z G, Chen D J, Lu H, Zhang R, Cao D P, Luo W J, Zheng Y D, Li L and Li Z H 2014 IEEE Electron Device Lett. 35 3
[5]Bulmer J, Suvarna P, Leathersich J, Marini J, Mahaboob I, Newman N and Shadi F 2016 IEEE Photon. Technol. Lett. 28 1
[6]Carrano J C, Lambert D J H, Eiting C J, Collins C J, Li T, Wang S, Yang B, Beck A L, Dupuis R D and Campbell J C 2000 Appl. Phys. Lett. 76 7
[7]Choi S, Kim H, Zhang Y, Bai X, Yoo D, Limb J, Ryou J, Shen S, Yoder P D and Dupuis D 2009 IEEE Photon. Technol. Lett. 21 1526
[8]Mcclintock R, Yasan A, Minder K, Kung P and Razeghi M 2005 Appl. Phys. Lett. 87 241123
[9]Tut T, Gokkavas M, Inal A and Ozbay E 2007 Appl. Phys. Lett. 90 163506
[10]Huang Z Q, Li J F, Zhang W L and Jiang H 2013 Appl. Phys. Express 6 054101
[11]Sun L, Chen J L, Li J F and Jiang H 2010 Appl. Phys. Lett. 97 191103
[12]Yang B, Li T, Heng K, Collins C, Wang S, Carrano J C, Dpuis R D, Campbell J C, Schurman M J and Ferguson I T 2000 IEEE J. Quantum Electron. 36 12
[13]Zhang S K, Wang W B, Dabiran A M, Osinsky A, Wowchak A M, Hertog B, Plaut C, Chow P P, Gundry S, Troudt E O and Alfano R R 2005 Appl. Phys. Lett. 87 262113
[14]Bertazzi F, Moresco M and Bellotti E 2009 J. Appl. Phys. 106 063718
[15]Dong K X, Chen D J, Lu H, Liu B, Han P, Zhang R and Zheng Y D 2013 IEEE Photon. Technol. Lett. 25 1510
[16]Bellotti E, Bertazzi F, Shishehchi S, Matsubara M and Goano M 2013 IEEE Trans. Electron Devices 60 3204
[17]Wang X D, Hu W D, Chen X S, Xu J T, Wang L, Li X Y and Lu W 2011 J. Phys. D 44 405102
[18]Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 1
[19]Wu L L, Zhao D G, Deng Y, Jiang D S, Zhu J J, Wang H, Liu Z S, Zhang S M, Zhang B S and Yang H 2012 Sci. Chin. Phys. Mech. Astron. 55 619
[20]Bulmer J, Suvarna P, Leathersich J, Marini J, Mahaboob I, Newman N and Shahedipour-Sandvik F 2016 IEEE Photon. Technol. Lett. 28 1
[21]Verghese S, McIntosh K A, Molnar R J, Mahoney L J, Aggarwal R L, Geis M W, Molvar K M, Duerr E K and Melngailis I 2001 IEEE Trans. Electron Devices 48 3
[22]Brunner D, Angerer H, Bustarret E, Freudenberg F, Hopler R, Dimitrov R, Ambacher O and Stutzmann M 1997 J. Appl. Phys. 82 5090
Related articles from Frontiers Journals
[1] Xinhuang Lin, Haotian Long, Shuo Ke, Yuyuan Wang, Ying Zhu, Chunsheng Chen, Changjin Wan, and Qing Wan. Indium-Gallium-Zinc-Oxide-Based Photoelectric Neuromorphic Transistors for Spiking Morse Coding[J]. Chin. Phys. Lett., 2022, 39(6): 018502
[2] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 018502
[3] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 018502
[4] Jin-Lei Lu, Chen Yue, Xuan-Zhang Li, Wen-Xin Wang, Hai-Qiang Jia, Hong Chen, Lu Wang. Numerical and Experimental Study on the Device Geometry Dependence of Performance of Heterjunction Phototransistors[J]. Chin. Phys. Lett., 2019, 36(10): 018502
[5] Sheng Cao, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. Carrier Dynamics Determined by Carrier-Phonon Coupling in InGaN/GaN Multiple Quantum Well Blue Light Emitting Diodes[J]. Chin. Phys. Lett., 2019, 36(2): 018502
[6] Guang-Yue Shen, Tian-Xiang Zheng, Bing-Cheng Du, Yang Lv, E Wu, Zhao-Hui Li, Guang Wu. Near-Range Large Field-of-View Three-Dimensional Photon-Counting Imaging with a Single-Pixel Si-Avalanche Photodiode[J]. Chin. Phys. Lett., 2018, 35(11): 018502
[7] Qing-feng Wu, Sheng Cao, Chun-lan Mo, Jian-li Zhang, Xiao-lan Wang, Zhi-jue Quan, Chang-da Zheng, Xiao-ming Wu, Shuan Pan, Guang-xu Wang, Jie Ding, Long-quan Xu, Jun-lin Liu, Feng-yi Jiang. Effects of Hydrogen Treatment in Barrier on the Electroluminescence of Green InGaN/GaN Single-Quantum-Well Light-Emitting Diodes with V-Shaped Pits Grown on Si Substrates[J]. Chin. Phys. Lett., 2018, 35(9): 018502
[8] Xiang Zhang, Yu-Dong Li, Lin Wen, Dong Zhou, Jie Feng, Lin-Dong Ma, Tian-Hui Wang, Yu-Long Cai, Zhi-Ming Wang, Qi Guo. Radiation Effects Due to 3MeV Proton Irradiations on Back-Side Illuminated CMOS Image Sensors[J]. Chin. Phys. Lett., 2018, 35(7): 018502
[9] Xiao-Peng Lv, Hui Wang, Ling-Qiang Meng, Xiao-Fang Wei, Yong-Zhen Chen, Xiang-Bin Kong, Jian-Jun Liu, Jian-Xin Tang, Peng-Fei Wang, Ying Wang. High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter[J]. Chin. Phys. Lett., 2016, 33(08): 018502
[10] LIU Fei, ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(12): 018502
[11] LIU Fei, YANG Sen, ZHOU Dong, LU Hai, ZHANG Rong, ZHENG You-Dou. Discrimination Voltage and Overdrive Bias Dependent Performance Evaluation of Passively Quenched SiC Single-Photon-Counting Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(08): 018502
[12] YUAN Li, WU Can, ZHANG Zhao-Hua, REN Tian-Ling. A Silicon-Based Positive-Intrinsic-Negative Photodetector Double Linear Array on a Thick Intrinsic Epitaxial Layer[J]. Chin. Phys. Lett., 2014, 31(05): 018502
[13] LI Lian-Bi, CHEN Zhi-Ming, REN Zhan-Qiang, GAO Zhan-Jun. Non-UV Photoelectric Properties of the Ni/n-Si/N+-SiC Isotype Heterostructure Schottky Barrier Photodiode[J]. Chin. Phys. Lett., 2013, 30(9): 018502
[14] LI Jian-Fei, HUANG Ze-Qiang, ZHANG Wen-Le, JIANG Hao. Large Active Area AlGaN Solar-Blind Schottky Avalanche Photodiodes with High Multiplication Gain[J]. Chin. Phys. Lett., 2013, 30(3): 018502
[15] YUE Ai-Wen, WANG Ren-Fan, XIONG Bing, SHI Jing. Fabrication of a 10 Gb/s InGaAs/InP Avalanche Photodiode with an AlGaInAs/InP Distributed Bragg Reflector[J]. Chin. Phys. Lett., 2013, 30(3): 018502
Viewed
Full text


Abstract