Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 010301    DOI: 10.1088/0256-307X/34/1/010301
GENERAL |
Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator
Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan **
Department of Physics, Ningbo University, Ningbo 315211
Download: PDF(473KB)   PDF(mobile)(465KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the effects of the initial-slip term by studying the dissipation-induced transition probabilities between any two eigenstates of a simple harmonic oscillator. The general analytical expressions for the transition probabilities are obtained, then the special cases of transition probabilities ignoring the Brownian motion from the ground state to the first few excited states are discussed. It is found that the initial-slip term not only makes the forbidden transitions between states of different parity possible but also lifts the initial value of the transition probabilities.
Received: 09 November 2016      Published: 29 December 2016
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ge (Solutions of wave equations: bound states)  
  05.40.Jc (Brownian motion)  
  02.50.Ey (Stochastic processes)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11275100, and the K. C. Wong Magna Foundation of Ningbo University.
TRENDMD:   
Cite this article:   
Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan 2017 Chin. Phys. Lett. 34 010301
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/010301       OR      http://cpl.iphy.ac.cn/Y2017/V34/I1/010301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kang-Kang Ju
Cui-Xian Guo
Xiao-Yin Pan
[1]Weiss U 1999 Quantum Dissipative Systems (Singapore: World Scientific)
[2]Caldeira A O and Leggett A J 1981 Phys. Rev. Lett. 46 211
[3]Caldeira A O and Leggett A J 1983Ann. Phys. 149 374
[4]Ford G W and Kac M 1987 J. Stat. Phys. 46 803
[5]Ford G W et al 1988 Phys. Rev. A 37 4419
[6]Leggett A J et al 1987 Rev. Mod. Phys. 59 1
[7]You B and Cen L X 2015 Acta Phys. Sin. 64 210302 (in Chinese)
[8]Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[9]Carmichael H 1993 An Open System Approach to Quantum Optics (Berlin: Springer)
[10]Feng X Q et al 2016 Acta Phys. Sin. 65 044205 (in Chinese)
[11]Zwanzig 1973 J. Stat. Phys. 9 215
[12]Ingold G L 2002 Lect. Notes Phys. 611 1
[13]Bez W 1980 Z. Phys. B 39 319
[14]Cortés E et al 1985 J. Chem. Phys. 82 2708
[15]Canizares J S and Sols F 1994 Physica A 212 181
[16]Feynman R P 1948 Rev. Mod. Phys. 20 367
[17]Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw-Hill)
[18]Dekker H 1981 Phys. Rep. 80 1 and references therein
[19]Um C I et al 2002 Phys. Rep. 362 63 and references therein
[20]Feynman R and Vernon F L 1963 Ann. Phys. (N. Y.) 24 118
[21]Caldeira A O and Leggett A J 1983 Physica A 121 587
[22]Hakim V and Ambegaokar V 1985 Phys. Rev. A 32 423
[23]Haake F and Reibold R 1985 Phys. Rev. A 32 2462
[24]Unruh W G and Zurek W H 1989 Phys. Rev. D 40 1071
[25]Grabert H et al 1988 Phys. Rep. 168 115
[26]Halliwell J J and Zoupas A 1995 Phys. Rev. D 52 7294
[27]Hu B L et al 1992 Phys. Rev. D 45 2843
[28]Hu B L et al 1993 Phys. Rev. D 47 1576
[29]Halliwell J J and Yu T 1996 Phys. Rev. D 53 2012
[30]Chou C H et al 2008 Phys. Rev. E 77 011112
[31]Yu L Y and Sun C P 1994 Phys. Rev. A 49 592
[32]Yu L Y 1995 Phys. Lett. A 202 167
[33]Landovitz L F et al 1979 Phys. Rev. A 20 1162
[34]Landovitz L F et al 1980 J. Math. Phys. 21 2159
[35]Landovitz L F et al 1983 J. Chem. Phys. 78 291
[36]Um C I et al 1987J. Phys. A 20 611
[37]Croxson P 1994 Phys. Rev. A 49 588
[38]Papadopoulous G J and Hadjiagapiou I 1999 Phys. Rev. A 59 3127
[39]Shao Z Q et al 2014 J. Chem. Phys. 141 224110
[40]Lai M Y et al 2016 Physica A 453 305
[41]Hanke A and Zwerger W 1995 Phys. Rev. E 52 6875
Related articles from Frontiers Journals
[1] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 010301
[2] Jun Wen, Guan-Qiang Li. Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process[J]. Chin. Phys. Lett., 2018, 35(6): 010301
[3] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 010301
[4] H. A. Zad. Total Pairwise Quantum Correlation and Entanglement in a Mixed-Three-Spin Ising-$XY$ Model with Added Dzyaloshinskii–Moriya Interaction under Decoherence[J]. Chin. Phys. Lett., 2016, 33(09): 010301
[5] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 010301
[6] Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan, Qing-Hu Chen. Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results[J]. Chin. Phys. Lett., 2016, 33(05): 010301
[7] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 010301
[8] MAZHAR Ali. Robustness of Genuine Tripartite Entanglement under Collective Dephasing[J]. Chin. Phys. Lett., 2015, 32(06): 010301
[9] ZHANG Da-Jian, LIU Chong-Long, TONG Dian-Min. Dynamics of Open Systems with Affine Maps[J]. Chin. Phys. Lett., 2015, 32(4): 010301
[10] YANG Yin-Biao, WANG Wen-Ge. A Phenomenon of Decoherence Induced by Chaotic Environment[J]. Chin. Phys. Lett., 2015, 32(03): 010301
[11] Mazhar Ali, HUANG Jiang. Distillability Sudden Birth of Entanglement for Qutrit-Qutrit Systems[J]. Chin. Phys. Lett., 2014, 31(11): 010301
[12] MING Yi, DING Xing. Quantum Heat Transfer in a Harmonic Chain with a Dephasing Reservoir[J]. Chin. Phys. Lett., 2014, 31(08): 010301
[13] XU Zhen-Yu, ZHU Shi-Qun. Quantum Speed Limit of a Photon under Non-Markovian Dynamics[J]. Chin. Phys. Lett., 2014, 31(2): 010301
[14] XIAO Xing, LI Yan-Ling. Stabilizing Geometric Phase by Detuning in a Non-Markovian Dissipative Environment[J]. Chin. Phys. Lett., 2014, 31(1): 010301
[15] YAO Chun-Mei, HE Zhi, CHEN Zhi-Hua, NIE Jian-Jun. Quantum Discord-Breaking Channels[J]. Chin. Phys. Lett., 2013, 30(9): 010301
Viewed
Full text


Abstract