Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 120301    DOI: 10.1088/0256-307X/33/12/120301
GENERAL |
Time-Bin Phase-Encoding Measurement-Device-Independent Quantum Key Distribution with Four Single-Photon Detectors
Guang-Zhao Tang1, Shi-Hai Sun1**, Huan Chen1, Chun-Yan Li1, Lin-Mei Liang2**
1College of Science, National University of Defense Technology, Changsha 410073
2State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073
Cite this article:   
Guang-Zhao Tang, Shi-Hai Sun, Huan Chen et al  2016 Chin. Phys. Lett. 33 120301
Download: PDF(692KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Measurement-device-independent quantum key distribution (MDI-QKD) eliminates all loopholes on detection. Previous experiments of time-bin phase-encoding MDI-QKD allow a factor of $\frac{3}{4}$ loss in the final key for the incapability of identifying two successive detection events by a single photon detector. Here we propose a new scheme to realize the time-bin phase-encoding MDI-QKD. The polarization states are used to generate the time bins and the phase-encoding states. The factor of loss in the final key is eliminated by using four single photon detectors at the measurement site. We show the feasibility of our scheme with a proof-of-principle experimental demonstration. The phase reference frame is rotated extremely slowly with only passive stabilization measures. The quantum bit error rate can reach 0.8% in the $Z$-basis and 26.2% in the $X$-basis.
Received: 12 August 2016      Published: 29 December 2016
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  89.70.Cf (Entropy and other measures of information)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11304391, 11674397 and 61671455, and the Program for New Century Excellent Talents in University of China.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/120301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/120301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guang-Zhao Tang
Shi-Hai Sun
Huan Chen
Chun-Yan Li
Lin-Mei Liang
[1]Bennett C H and Brassard G 1984 Int. Conf. Comput. Syst. Signal Process (Bangalore India) (New York: IEEE) p 175
[2]Ekert A K 1991 Phys. Rev. Lett. 67 661
[3]Huang Y X, Hu H P, Liang R S, Lu Y Q, Wang J D and Lu W 2008 Chin. Phys. Lett. 25 2485
[4]Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L and Guo G C 2008 Chin. Phys. Lett. 25 3547
[5]Yuan Z L, Dixon A R, Dynes J F, Sharpe A W and Shields A J 2008 Appl. Phys. Lett. 92 201104
[6]Han J J, Sun S H and Liang L M 2011 Chin. Phys. Lett. 28 040303
[7]Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
[8]Zhao Y, Fung C H F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 042333
[9]Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
[10]Sun S H, Jiang M S and Liang L M 2011 Phys. Rev. A 83 062331
[11]Jain N, Wittmann C, Lydersen L, Wiechers C et al 2011 Phys. Rev. Lett. 107 110501
[12]Yuan Z L, Dynes J F and Shields A J 2010 Nat. Photon. 4 800
[13]Sun S H, Xu F H, Jiang M S, Ma X C, Lo H K and Liang L M 2015 Phys. Rev. A 92 022304
[14]Ací n A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
[15]Gisin N, Pironio S and Sangouard N 2010 Phys. Rev. Lett. 105 070501
[16]Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[17]Rubenok A, Slater J A, Chan P, Lucio-Martinez I and Tittel W 2013 Phys. Rev. Lett. 111 130501
[18]Liu Y, Chen T Y, Wang L J et al 2013 Phys. Rev. Lett. 111 130502
[19]Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L and Lo H K 2014 Phys. Rev. Lett. 112 190503
[20]Tang Y L, Hua H L, Chen S J et al 2014 Phys. Rev. Lett. 113 190501
[21]Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502
[22]Ma X, Razavi M 2012 Phys. Rev. A 86 062319
[23]Lucio-Martinez I, Chan P, Mo X, Hosier S and Tittel W 2009 New J. Phys. 11 095001
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 120301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 120301
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 120301
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 120301
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 120301
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 120301
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 120301
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 120301
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 120301
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 120301
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 120301
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 120301
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 120301
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 120301
[15] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 120301
Viewed
Full text


Abstract