Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 100301    DOI: 10.1088/0256-307X/33/10/100301
GENERAL |
Polarization-Encoding-Based Measurement-Device-Independent Quantum Key Distribution with a Single Untrusted Source
Chuan-Qi Liu, Chang-Hua Zhu**, Lian-Hui Wang, Lin-Xi Zhang, Chang-Xing Pei
State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071
Cite this article:   
Chuan-Qi Liu, Chang-Hua Zhu, Lian-Hui Wang et al  2016 Chin. Phys. Lett. 33 100301
Download: PDF(332KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Measurement-device-independent quantum key distribution (MDI-QKD) can be immune to all detector side-channel attacks and guarantee the information-theoretical security even with uncharacterized single photon detectors. MDI-QKD has been demonstrated in both laboratories and field-tests by using attenuated lasers combined with the decoy-state technique. However, it is a critical assumption that the sources used by legitimate participants are trusted in MDI-QKD. Hence, it is possible that a potential security risk exists. Here we propose a new scheme of polarization-encoding-based MDI-QKD with a single untrusted source, by which the complexity of the synchronization system can be reduced and the success rate of the Bell-state measurement can be improved. Meanwhile, the decoy-state method is employed to avoid the security issues introduced by a non-ideal single photon source. We also derive a security analysis of the proposed system. In addition, it seems to be a promising candidate for the implementation for QKD network in the near future.
Received: 13 April 2016      Published: 27 October 2016
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61372076 and 61301171, and the 111 Project under Grant No B08038.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/100301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/100301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chuan-Qi Liu
Chang-Hua Zhu
Lian-Hui Wang
Lin-Xi Zhang
Chang-Xing Pei
[1]Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Comput. Syst. Signal Process. (Bangalore India) p 175
[2]Ekert A K 1991 Phys. Rev. Lett. 67 661
[3]Bennett C H 1992 Phys. Rev. Lett. 68 3121
[4]Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[5]Vernam G S 1926 J. A. I.E.E. 45 109
[6]Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[7]Zou X F, Qiu D W, Li L Z et al 2009 Phys. Rev. A 79 052312
[8]Zou X F and Qiu D W 2014 Chin.-Phys. Mech. Astron. 57 1696
[9]Zou X F and Qiu D W 2010 Phys. Rev. A 82 042325
[10]Zou X F, Qiu D W and Mateus P 2013 Int. J. Theor. Phys. 52 3295
[11]Lo H K, Curty M and Tamaki K 2014 Nat. Photon. 8 595
[12]Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[13]Brassard G, Lutkenhaus N, Mor T et al 2000 Phys. Rev. Lett. 85 1330
[14]Qi B, Fred Fung C H, Lo H K et al 2006 Quantum Inf. Comput. 7 73
[15]Zhao Y, Fred Fung C H, Qi B et al 2008 Phys. Rev. A 78 042333
[16]Makarov V, Anisimov A and Skaar J 2006 Phys. Rev. A 74 022313
[17]Fred Fung C H, Qi B, Tamaki K et al 2007 Phys. Rev. A 75 032314
[18]Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[19]Wang X B 2005 Phys. Rev. Lett. 94 230503
[20]Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[21]Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[22]Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[23]Ma X F and Razavi M 2012 Phys. Rev. A 86 062319
[24]Wang X B 2013 Phys. Rev. A 87 012320
[25]Dong C, Zhao S H, Zhao W H et al 2014 Acta Phys. Sin. 63 030302 (in Chinese)
[26]Xu F H, Xu H and Lo H K 2014 Phys. Rev. A 89 052333
[27]Fu Y, Yin H L, Chen T Y and Chen Z B 2015 Phys. Rev. Lett. 114 090501
[28]Yu Z W, Zhou Y H and Wang X B 2015 Phys. Rev. A 91 032318
[29]Wang L, Zhao S M, Gong L Y and Cheng W W 2015 Chin. Phys. B 24 120307
[30]Rubenok A, Slater J A, Chan P et al 2013 Phys. Rev. Lett. 111 130501
[31]Liu Y, Chen T Y, Wang L J et al 2013 Phys. Rev. Lett. 111 130502
[32]Ferreira da Silva T, Vitoreti D, Xavier G B et al 2013 Phys. Rev. A 88 052303
[33]Tang Z Y, Liao Z F, Xu F H et al 2014 Phys. Rev. Lett. 112 190503
[34]Choi Y, Kwon O, Woo M et al 2016 Phys. Rev. A 93 032319
[35]Tang Y L, Yin H L, Zhao Q et al 2016 Phys. Rev. X 6 011024
[36]Xu F H 2015 Phys. Rev. A 92 012333
[37]Zhao Y, Qi B and Lo H K 2008 Phys. Rev. A 77 052327
[38]Liu W T, Wu W, Liang L M, Li C Z and Yuan J M 2006 Chin. Phys. Lett. 23 287
[39]Ribordy G, Gautier J D, Gisin N et al 2000 J. Mod. Opt. 47 517
[40]Gui Y Z, Han Z F, Mo X F and Guo G C 2003 Chin. Phys. Lett. 20 608
[41]Xu F X, Zhang Y, Zhou Z et al 2009 Phys. Rev. A 80 062309
[42]Gisin N, Fasel S, Kraus B et al 2006 Phys. Rev. A 73 022320
[43]Biham E, Huttner B and Mor T 1996 Phys. Rev. A 54 2651
[44]Inamori H 2002 Algorithmica 34 340
Related articles from Frontiers Journals
[1] Bin-Lin Chen and Dan-Bo Zhang. Variational Quantum Eigensolver with Mutual Variance-Hamiltonian Optimization[J]. Chin. Phys. Lett., 2023, 40(1): 100301
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 100301
[3] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 100301
[4] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 100301
[5] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 100301
[6] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 100301
[7] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 100301
[8] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 100301
[9] Li-Hua Lu, You-Quan Li. Quantum Approach to Fast Protein-Folding Time[J]. Chin. Phys. Lett., 2019, 36(8): 100301
[10] Hongye Yu, Yuliang Huang, Biao Wu. Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm[J]. Chin. Phys. Lett., 2018, 35(11): 100301
[11] E. Rezaei Fard, K. Aghayar. Quantum Adiabatic Evolution for Pattern Recognition Problem[J]. Chin. Phys. Lett., 2017, 34(12): 100301
[12] Bo-Wen Ma, Wan-Su Bao, Tan Li, Feng-Guang Li, Shuo Zhang, Xiang-Qun Fu. A Four-Phase Improvement of Grover's Algorithm[J]. Chin. Phys. Lett., 2017, 34(7): 100301
[13] Xing Chen, Zhen-Wei Zhang, Huan Zhao, Nuan-Rang Wang, Ren-Fu Yang, Ke-Ming Feng. Exact Solution to Spin Squeezing of the Arbitrary-Range Spin Interaction and Transverse Field Model[J]. Chin. Phys. Lett., 2016, 33(10): 100301
[14] SONG Xiao-Tian, LI Hong-Wei, YIN Zhen-Qiang, LIANG Wen-Ye, ZHANG Chun-Mei, HAN Yun-Guang, CHEN Wei, HAN Zheng-Fu. Phase-Coding Self-Testing Quantum Random Number Generator[J]. Chin. Phys. Lett., 2015, 32(08): 100301
[15] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 100301
Viewed
Full text


Abstract