Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 047701    DOI: 10.1088/0256-307X/33/4/047701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
First-Principles Investigations of Pb$_{0.5}$Ba$_{0.5}$TiO$_3$ Alloys Based on Structure Predictions
Hong-Bo Wu, Yi-Feng Duan**, Chang-Ming Zhao, Kun Liu, Li-Xia Qin
Department of Physics, China University of Mining and Technology, Xuzhou 221116
Cite this article:   
Hong-Bo Wu, Yi-Feng Duan, Chang-Ming Zhao et al  2016 Chin. Phys. Lett. 33 047701
Download: PDF(1177KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Crystal structure predictions of Pb$_{0.5}$Ba$_{0.5}$TiO$_3$ alloys under different pressures are performed based on the particle swarming optimization algorithm. The predicted stable ground-state and high-pressure phases are tetragonal ferroelectric ($I4mm$) and cubic para-electric ($Fm\bar{3}m$), respectively, whose structural details have not been reported. The pressure-induced colossal enhancements in piezoelectric response are associated with the mechanical and dynamical instabilities instead of polarization rotation. The band gap of the tetragonal phase is indirect and that of the cubic phase is always direct. As pressure increases, the alloy displays the similar band-gap behaviors to PbTiO$_3$, while different from BaTiO$_3$, which is attributed to the different orbital contributions to the valence bands. Our calculated results are in good agreement with the available data.
Received: 03 January 2016      Published: 29 April 2016
PACS:  77.80.B- (Phase transitions and Curie point)  
  62.50.-p (High-pressure effects in solids and liquids)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/047701       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/047701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Bo Wu
Yi-Feng Duan
Chang-Ming Zhao
Kun Liu
Li-Xia Qin
[1]Lines M and Class A 1979 Principles and Applications of Ferroelectrics and Telated Materials (Oxford: Clarendon)
[2]Hao W T, Zhang J L, Zheng P, Wu Y Q, Tan Y Q and Zhao X 2013 Chin. Phys. Lett. 30 127701
[3]Duan Y, Qin L, Shi L and Tang G 2011 Chin. Phys. Lett. 28 046101
[4]Yi L and Duan Y 2005 Chin. Phys. Lett. 22 435
[5]Park S E and Shrout T R 1997 J. Appl. Phys. 82 1804
[6]Fu H X and Cohen R E 2000 Nature 403 281
[7]Wu Z G and Cohen R E 2005 Phys. Rev. Lett. 95 037601
[8]Wu Z G and Krakauer H 2003 Phys. Rev. B 68 014112
[9]Kighelman Z, Damjanovic D, Cantoni M and Setter N 2002 J. Appl. Phys. 91 1495
[10]Park S, Wada S, Cross L and Shrout T 1999 J. Appl. Phys. 86 2746
[11]Kornev I, Bellaiche L, Bouvier P, Janolin P E, Dkhil B and Kreisel J 2005 Phys. Rev. Lett. 95 196804
[12]Le Marrec F, Farhi R, El Marssi M, Dellis J, Karkut M and Ariosa D 2000 Phys. Rev. B 61 R6447
[13]Wang Y, Liu H, Lv J, Zhu L, Wang H and Ma Y 2011 Nat. Commun. 2 563
[14]Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[15]Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[16]Li P, Cao G, Wang Y and Ma Y 2010 J. Phys. Chem. C 114 21745
[17]Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[18]Perdew J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19]Qin L, Duan Y, Shi H, Shi L and Tang G 2013 J. Phys.: Condens. Matter 25 045801
[20]See http://phonopy.sourceforge.net for information about PHONOPY package
[21]Duan Y, Qin L and Shi H 2008 J. Phys.: Condens. Matter 20 175210
[22]Fu H and Bellaiche L 2003 Phys. Rev. Lett. 91 057601
[23]Wu Z, Zhao E, Xiang H, Hao X, Liu X and Meng J 2007 Phys. Rev. B 76 054115
[24]Wu H, Duan Y, Liu K, Lv D, Qin L, S Hi L and Tang G 2015 Chin. Phys. Lett. 32 057701
[25]Duan Y, Tang G, Chen C, Lu T and Wu Z 2012 Phys. Rev. B 85 054108
[26]Lany S 2013 Phys. Rev. B 87 085112
[27]Evarestov R and Bandura A 2012 J. Comput. Chem. 33 1123
[28]Shimada T, Ueda T, Wang J and Kitamura T 2013 Phys. Rev. B 87 174111
Related articles from Frontiers Journals
[1] Jian-Gang Kong, Qing-Xu Li, Jian Li, Yu Liu, and Jia-Ji Zhu. Self-Supervised Graph Neural Networks for Accurate Prediction of Néel Temperature[J]. Chin. Phys. Lett., 2022, 39(6): 047701
[2] Chenqiang Hua, Hua Bai, Yi Zheng, Zhu-An Xu, Shengyuan A. Yang, Yunhao Lu, and Su-Huai Wei. Strong Coupled Magnetic and Electric Ordering in Monolayer of Metal Thio(seleno)phosphates[J]. Chin. Phys. Lett., 2021, 38(7): 047701
[3] Hong-Mei Yin, Heng-Wei Zhou, Yi-Neng Huang. A New Model of Ferroelectric Phase Transition with Neglectable Tunneling Effect[J]. Chin. Phys. Lett., 2019, 36(7): 047701
[4] XI Li-Ying, CHEN Huan-Ming, ZHENG Fu, GAO Hua, TONG Yang, MA Zhi. Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method[J]. Chin. Phys. Lett., 2015, 32(09): 047701
[5] WU Hong-Bo, DUAN Yi-Feng, LIU Kun, LV Dong, QIN Li-Xia, SHI Li-Wei, TANG Gang. Dynamic Investigations of Pressure-Induced Abnormal Phase Transitions in PbTiO3[J]. Chin. Phys. Lett., 2015, 32(5): 047701
[6] LIU Juan QIN Ying, LIU Xiao-Qiang, CHEN Xiang-Ming. Dielectric Characteristics in BiFeO3-Modified SrTiO3 Incipient Ferroelectric Ceramics[J]. Chin. Phys. Lett., 2015, 32(02): 047701
[7] ZHU Xiao-Li, CHEN Xiang-Ming. Ferroelectric Transition and Curie–Weiss Behavior in Some Filled Tungsten Bronze Ceramics[J]. Chin. Phys. Lett., 2014, 31(1): 047701
[8] LIU Yang**,PENG Xing-Ping. Validity of Nonlinear Thermodynamic Models in Ferroelectric-Paraelectric Bilayers and Superlattices[J]. Chin. Phys. Lett., 2012, 29(5): 047701
[9] LIU Yang**, PENG Xing-Ping . Strain Effects of the Structural Characteristics of Ferroelectric Transition in Single-Domain Epitaxial BiFeO3 Films[J]. Chin. Phys. Lett., 2011, 28(6): 047701
Viewed
Full text


Abstract