Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 036202    DOI: 10.1088/0256-307X/33/3/036202
Ground-State Structure and Physical Properties of NB$_{2}$ Predicted from First Principles
Jing-He Wu, Chang-Xin Liu**
Department of Physics, Henan Institute of Education, Zhengzhou 450046
Download: PDF(1247KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the newly developed particle swarm optimization algorithm on crystal structural prediction, we predict a new class of boron nitride with stoichiometry of NB$_{2}$ at ambient pressure, which belongs to the tetragonal $I\bar{4}m2$ space group. Then, its structure, elastic properties, electronic structure, and chemical bonding are investigated by first-principles calculations with the density functional theory. The phonon calculation and elastic constants confirm that the predicted NB$_{2}$ is dynamically and mechanically stable, respectively. The large bulk modulus, large shear modulus, large Young's modulus, and small Poisson's ratio show that the $I\bar{4}m2$ NB$_{2}$ should be a new superhard material with a calculated theoretical Vickers hardness value of 66 GPa. Further analysis on density of states and electron localization function demonstrate that the strong B–B and B–N covalent bonds are the main reason for its high hardness in $I\bar{4}m2$ NB$_{2}$.
Received: 20 December 2015      Published: 31 March 2016
PACS:  62.20.D- (Elasticity) (Elastic moduli)  
  62.20.dq (Other elastic constants) (First-principles theory) (Electronic structure and bonding characteristics)  
Cite this article:   
Jing-He Wu, Chang-Xin Liu 2016 Chin. Phys. Lett. 33 036202
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Jing-He Wu
Chang-Xin Liu
[1]Veprek S 1999 J. Vac. Sci. Technol. A 17 2401
[2]Li Q K, Sun Y, Zhou Y and Zeng F L 2012 Acta Phys. Sin. 61 093104 (in Chinese)
[3]Li Q K, Sun Y, Zhou Y and Zeng F L 2012 Acta Phys. Sin. 61 043103 (in Chinese)
[4]Solozhenko V L, Kurahevych O O, Andrault D, Godec Y L and Mezouar M 2009 Phys. Rev. Lett. 102 015506
[5]Novikov N V, Dub S N and Mal'nev V I 1983 Sov. J. Superhard Mater. (USRR) 5 16
[6]Wentzcovitch R M, Fahy S, Cohen M L and Louie S G 1988 Phys. Rev. B 38 6191
[7]Doll K, Schon J C and Jansen M 2008 Phys. Rev. B 78 144110
[8]Li Z P and Gao F M 2012 Phys. Chem. Chem. Phys. 14 869
[9]Li Y, Hao J, Liu H, Lu S and Tse J S 2015 Phys. Rev. Lett. 115 105502
[10]Wang Y C, Lv J and Ma Y M 2010 Phys. Rev. B 82 094116
[11]Lv J, Wang Y C, Zhu L and Ma Y M 2012 J. Chem. Phys. 137 084104
[12]Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
[13]Zhang M, Liu H Y, Li Q, Gao B, Wang Y C, Li H D, Chen C F and Ma Y M 2015 Phys. Rev. Lett. 114 015502
[14]Li Q, Wang J Y, Zhang M, Li Q and Ma Y M 2015 RSC Adv. 5 35882
[15]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[17]Hill R 1952 Proc. Phys. Soc. A 65 349
[18]Watt J P and Peselnick L 1980 J. Appl. Phys. 51 1525
[19]Chen X Q, Niu H Y, Li D Z and Li Y Y 2011 Intermetallics 19 1275
[20]Chen X Q, Niu H Y, Franchini C, Li D Z and Li Y Y 2011 Phys. Rev. B 84 121405(R)
[21]Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[22]Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[23]Sun H, Jhi S H, Roundy D, Cohen M L and Louie S G 2001 Phys. Rev. B 64 094108
[24]Li Q, Wang M, Oganov A R, Cui T, Ma Y M and Zou G T 2009 J. Appl. Phys. 105 053514
Related articles from Frontiers Journals
[1] Yong-Hua Zhang, S. Karthikeyan, Jian Zhang. Polymer-Sandwich Ultra-Thin Silicon(100) Platform for Flexible Electronics[J]. Chin. Phys. Lett., 2016, 33(06): 036202
[2] LIU Yun-Fang, CHENG Lai-Fei, ZENG Qing-Feng, ZHANG Li-Tong. Effects of N on Electronic and Mechanical Properties of H-Type SiC[J]. Chin. Phys. Lett., 2015, 32(08): 036202
[3] K. Ephraim Babu, N. Murali, K. Vijaya Babu, B. Kishore Babu, V. Veeraiah. Elastic and Optoelectronic Properties of KCdF3: ab initio Calculations through LDA/GGA/TB-mBJ within FP-LAPW Method[J]. Chin. Phys. Lett., 2015, 32(01): 036202
[4] YU You, CHEN Chun-Lin, ZHAO Guo-Dong, ZHENG Xiao-Lin, ZHU Xing-Hua. Mechanical and Vibrational Properties of ZnS with Wurtzite Structure: A First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(10): 036202
[5] FANG Ming-Lei, XU Feng, WEI Wen-Hou, YANG Zhi-Yong. Structural and Physical Properties of AsxSe100−x Glasses[J]. Chin. Phys. Lett., 2014, 31(06): 036202
[6] WANG Ai-Kun, WANG Shi-Guang, XUE Rong-Jie, LIU Guo-Cai, ZHAO Kun. Correlation between Atomic Size Ratio and Poisson's Ratio in Metallic Glasses[J]. Chin. Phys. Lett., 2014, 31(06): 036202
[7] QI Chen-Jin, FENG Jing, ZHOU Rong-Feng, JIANG Ye-Hua, ZHOU Rong. First Principles Study on the Stability and Mechanical Properties of MB (M=V, Nb and Ta) Compounds[J]. Chin. Phys. Lett., 2013, 30(11): 036202
[8] ZHANG Cang-Hai, YANG Yi, WANG Yu-Feng, ZHOU Chang-Jian, SHU Yi, TIAN He, REN Tian-Ling. A Novel Fabrication Method for Flexible SOI Substrate Based on Trench Refilling with Polydimethylsiloxane[J]. Chin. Phys. Lett., 2013, 30(8): 036202
[9] M. Güler, E. Güler. Embedded Atom Method-Based Geometry Optimization Aspects of Body-Centered Cubic Metals[J]. Chin. Phys. Lett., 2013, 30(5): 036202
[10] GU Fang, ZHANG Jia-Hong**, XU Lin-Hua, LIU Qing-Quan, LI Min . Influence of Surface Effects on the Elastic Properties of Silicon Nanowires with Different Cross Sections[J]. Chin. Phys. Lett., 2011, 28(10): 036202
[11] DU Yu-Lei. Electronic Structure and Elastic Properties of Ti3AlC from First-Principles Calculations[J]. Chin. Phys. Lett., 2009, 26(11): 036202
[12] WANG Ting, CUI Zhan-Zhong, XU Li-Xin. Thermoelastic Stress Field Investigation of GaN Material for Laser Lift-off Technique based on Finite Element Method[J]. Chin. Phys. Lett., 2009, 26(9): 036202
Full text