Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 090401    DOI: 10.1088/0256-307X/32/9/090401
Seismic Noise Suppression for Ground-Based Investigation of an Inertial Sensor by Suspending the Electrode Cage
TAN Ding-Yin, YIN Hang, ZHOU Ze-Bing**
MoE Key Laboratory of Fundamental Physical Quantities Measurement and School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
TAN Ding-Yin, YIN Hang, ZHOU Ze-Bing 2015 Chin. Phys. Lett. 32 090401
Download: PDF(417KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Performance test of a high precise accelerometer or an inertial sensor on the ground is inevitably limited by the seismic noise. A torsion pendulum has been used to investigate the performances of an electrostatic accelerometer, where the test mass is suspended by a fiber to compensate for its weight, and this scheme demonstrates an advantage, compared with the high-voltage levitation scheme, in which the effect of the seismic noise can be suppressed for a few orders of magnitude in low frequencies. In this work, the capacitive electrode cage is proposed to be suspended by another pendulum, and theoretical analysis shows that the effects of the seismic noise can be further suppressed for more than one order by suspending the electrode cage.
Received: 28 April 2015      Published: 02 October 2015
PACS:  04.80.Nn (Gravitational wave detectors and experiments)  
  04.80.-y (Experimental studies of gravity)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
TAN Ding-Yin
YIN Hang
ZHOU Ze-Bing
[1] Hueller M et al 2002 Class. Quantum Grav. 19 1757
[2] Ruediger A 2002 Int. J. Mod. Phys. D 11 963
[3] Touboul P et al 1999 Acta Astronautica 45 605
[4] Willemenot E and Touboul P 2000 Rev. Sci. Instrum. 71 310
[5] Carbone L, Cavalleri A, Dolesi R, Hoyle C D, Hueller M, Vitale S and Weber W J 2004 Class. Quantum Grav. 21 S611
[6] Carbone L, Cavalleri A, Dolesi R, Hoyle C D, Hueller M, Vitale S and Weber W J 2005 Class. Quantum Grav. 22 S509
[7] Speake C C and Gillies G T 1987 Z. Naturforsch. A 42 663
[8] Zhao P F, Zhang P H, Tang J X and Luo J 1998 Acta Phys. Sin. (Overseas Edition) 7 744
[9] Zhou Z B, Luo J, Yan Q, Zhang Y Z and Nie Y X 2001 Chin. Phys. Lett. 18 10
[10] Gao S W, Luan E J, Zhou Z B and Luo J 2003 Chin. Phys. Lett. 20 1214
[11] Berger J 1974 J. Geophys. Res. 79 1210
[12] Tu H B, Bai Y Z, Zhou Z B, Liang Y R and Luo J 2009 Chin. Phys. Lett. 26 040403
[13] Tu H B, Bai Y Z, Zhou Z B, Liu L, Cai L and Luo J 2010 Class. Quantum Grav. 27 205016
[14] Zhou Z B, Liu L, Tu H B, Bai Y Z and Luo J 2010 Class. Quantum Grav. 27 175012
[15] Willemen E et al 1998 Boll. Geof. Teor. Appl. 40 527
[16] Touboul P et al 1999 Boll. Geof. Teor. Appl. 41 321
[17] Lorenzo M et al 2013 ASP Conf. Ser. 467 303
[18] Peterson J 1993 US Geological Survey Report pp 93–322
[19] Carbone L, Cavalleri A, Dolesi R, Hoyle C D, Hueller M, Vitale S and Weber W J 2003 Phys. Rev. Lett. 91 151101
[20] Cavalleri A et al 2009 Class. Quantum Grav. 26 094017
[21] Fabrizio D M et al 2013 Phys. Rev. D 87 122003
Related articles from Frontiers Journals
[1] Chao-Guang Huang, Yong-Gui Li, Ning Zhu. The Three-Arm Michelson–Fabry–Pérot Detector for Gravitational Waves[J]. Chin. Phys. Lett., 2016, 33(08): 090401
[2] GAO Fen, ZHOU Ze-Bing**, LUO Jun . Feasibility for Testing the Equivalence Principle with Optical Readout in Space[J]. Chin. Phys. Lett., 2011, 28(8): 090401
[3] ZHOU Lin, , XIONG Zong-Yuan, , YANG Wei, , TANG Biao, , PENG Wen-Cui, , WANG Yi-Bo, , XU Peng, , WANG Jin, ZHAN Ming-Sheng, ** . Measurement of Local Gravity via a Cold Atom Interferometer[J]. Chin. Phys. Lett., 2011, 28(1): 090401
[4] LI Fang-Yu, YANG Nan. Phase and Polarization State of High-Frequency Relic Gravitational Waves[J]. Chin. Phys. Lett., 2009, 26(5): 090401
[5] LI Fang-Yu, CHEN Ying, WANG Ping. Electromagnetic Response of High-Frequency Gravitational Waves by Coupling Open Resonant Cavity[J]. Chin. Phys. Lett., 2007, 24(12): 090401
[6] FU Jian, TANG Shao-Fang. Possible Approach to Improve Sensitivity of a Michelson Interferometer[J]. Chin. Phys. Lett., 2007, 24(8): 090401
[7] LEE Zhi-Jun, WAN Zhen-Zhu,. Noises in Detecting Relic Gravitational Wave[J]. Chin. Phys. Lett., 2006, 23(12): 090401
[8] LI Fang-Yu, YANG Nan. Resonant Interaction Between a Weak Gravitational Wave and a Microwave Beam in the Double Polarized States Through a Static Magnetic Field[J]. Chin. Phys. Lett., 2004, 21(11): 090401
[9] LI Fang-Yu, WU Zhang-Han, ZHANG Yi. Coupling of a Linearized Gravitational Wave to Electromagnetic Fields and Relevant Noise Issues[J]. Chin. Phys. Lett., 2003, 20(11): 090401
[10] ZHAO Peng-Fei, HUANG Yu-Ying, TANG Meng-Xi. A New Ultra-low Frequency Passive Vertical Vibration Isolation System [J]. Chin. Phys. Lett., 2002, 19(2): 090401
[11] LI Fang-Yu, TANG Meng-Xi. Electrogravitational Resonance of a Gaussian Beam to a High-Frequency Relic Gravitational Wave[J]. Chin. Phys. Lett., 2001, 18(12): 090401
[12] LI Fang-yu, TANG Meng-xi, WEN De-hua. Coherent Resonance of a Strong Electromagnetic Wave Beam to a Standing Gravitational Wave [J]. Chin. Phys. Lett., 1999, 16(1): 090401
[13] LI Fang-yu, TANG Meng-xi. Electrodynamical Response to a High Frequency Standing Gravitational Wave[J]. Chin. Phys. Lett., 1998, 15(3): 090401
Full text