Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 067403    DOI: 10.1088/0256-307X/31/6/067403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Observation of Strong-Coupling Pairing with Weakened Fermi-Surface Nesting at Optimal Hole Doping in Ca0.33Na0.67Fe2As2
SHI Ying-Bo1, HUANG Yao-Bo1,2, WANG Xiao-Ping1,2, SHI Xun1,2, ROEKEGHEM A-Van1,3, ZHANG Wei-Lu1, XU Na1,2, RICHARD Pierre1,4**, QIAN Tian1**, RIENKS Emile5, THIRUPATHAIAH S5,6, ZHAO Kan1, JIN Chang-Qing1,4, SHI Ming2, DING Hong1,4
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Paul Scherrer Institut, Swiss Light Source, CH-5232 Villigen PSI, Switzerland
3Centre de Physique Théorique, Ecole Polytechnique, CNRS-UMR7644,Palaiseau 91128, France
4Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871
5Helmholtz-Zentrum Berlin, BESSY,Berlin D-12489, Germany
6IFW-Dresden, P. O. Box 270116,Dresden D-01171, Germany
Cite this article:   
SHI Ying-Bo, HUANG Yao-Bo, WANG Xiao-Ping et al  2014 Chin. Phys. Lett. 31 067403
Download: PDF(938KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report an angle-resolved photoemission investigation of optimally doped Ca0.33Na0.67Fe2As2. The Fermi surface topology of this compound is similar to that of the well-studied Ba0.6K0.4Fe2As2 material, except for larger hole pockets resulting from a higher hole concentration per Fe atoms. We find that the quasi-nesting conditions are weakened in this compound compared to Ba0.6K0.4Fe2As2. Similar to Ba0.6K0.4Fe2As2, we observe nearly isotropic superconducting gaps with Fermi surface-dependent magnitudes for Ca0.33Na0.67Fe2As2. A small variation in the gap size along the momentum direction perpendicular to the surface is found for one of the Fermi surfaces. Our superconducting gap results on all Fermi surface sheets fit simultaneously very well to a global gap function derived from a strong coupling approach, which contains only 2 global parameters.
Published: 26 May 2014
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/067403       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/067403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Ying-Bo
HUANG Yao-Bo
WANG Xiao-Ping
SHI Xun
ROEKEGHEM A-Van
ZHANG Wei-Lu
XU Na
RICHARD Pierre
QIAN Tian
RIENKS Emile
THIRUPATHAIAH S
ZHAO Kan
JIN Chang-Qing
SHI Ming
DING Hong
[1] Graser S, Maier T A, Hirschfeld P J and Scalapino 2009 New J. Phys. 11 025016
[2] Hirschfeld P H, Korshunov M M and Mazin I I 2011 Rep. Prog. Phys. 74 124508
[3] Kontani K and Onari S 2010 Phys. Rev. Lett. 104 157001
[4] Seo K, Bernevig B A and Hu J 2008 Phys. Rev. Lett. 101 206404
[5] Fang C et al 2011 Phys. Rev. X 1 011009
[6] Zhang Y et al 2010 Phys. Rev. Lett. 105 117003
[7] Hu J P and Hao N N 2012 Phys. Rev. X 2 021009
[8] Hu J P and Ding H 2012 Sci. Rep. 2 381
[9] Zhao K et al 2011 Phys. Rev. B 84 184534
[10] Ding H et al 2008 Europhys. Lett. 83 47001
[11] Zhao L et al 2008 Chin. Phys. Lett. 25 4402
[12] Zhao K et al 2010 J. Phys.: Condens. Matter 22 222203
[13] Damascelli A et al 2004 Phys. Scr. T109 61
[14] Richard Pet al 2011 Rep. Prog. Phys. 74 124512
[15] Wang X P et al 2012 Phys. Rev. B 85 214518
[16] Xu Y M et al 2011 Nat. Phys. 7 198
[17] Zhang P et al 2011 Rev. Sci. Instrum. 82 043712
[18] Evtushinsky D V et al 2013 Phys. Rev. B 87 094501
[19] Pramanik A K et al 2011 Phys. Rev. B 84 064525
[20] Huang Y B et al 2012 AIP Adv. 2 041409
[21] Zhang Y et al 2012 Nat. Phys. 8 371
[22] Xu N et al 2013 Phys. Rev. B 87 094513
[23] McQueeney R J et al 2008 Phys. Rev. Lett. 101 227205
Related articles from Frontiers Journals
[1] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 067403
[2] B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen. NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(12): 067403
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 067403
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 067403
[5] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 067403
[6] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 067403
[7] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 067403
[8] Shaobo Liu, Sheng Ma, Zhaosheng Wang, Wei Hu, Zian Li, Qimei Liang, Hong Wang, Yuhang Zhang, Zouyouwei Lu, Jie Yuan, Kui Jin, Jian-Qi Li, Li Pi, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes[J]. Chin. Phys. Lett., 2021, 38(5): 067403
[9] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 067403
[10] Cheng Zheng, Dapeng Zhao, Xinqiang Cai, Wantong Huang, Fanqi Meng, Qinghua Zhang, Lin Tang, Xiaopeng Hu, Lin Gu, Shuai-Hua Ji, Xi Chen. Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(8): 067403
[11] Shi-Hang Na, Wei Wu, and Jian-Lin Luo. Anisotropy Properties of Mn$_{2}$P Single Crystals with Antiferromagnetic Transition[J]. Chin. Phys. Lett., 2020, 37(8): 067403
[12] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 067403
[13] Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia, Xi-Ping Chen, Cao Wang, Zhi-Cheng Wang, Guang-Han Cao, Shi-Liang Li, Hui-Qian Luo. Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide[J]. Chin. Phys. Lett., 2019, 36(10): 067403
[14] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 067403
[15] Yun Xie, Junsheng Feng, Hongjun Xiang, Xingao Gong. Interplay of Strain and Magnetism in FeSe Monolayers[J]. Chin. Phys. Lett., 2019, 36(5): 067403
Viewed
Full text


Abstract