Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 017401    DOI: 10.1088/0256-307X/31/1/017401
Direct Observation of High-Temperature Superconductivity in One-Unit-Cell FeSe Films
ZHANG Wen-Hao1,4, SUN Yi2 , ZHANG Jin-Song1, LI Fang-Sen1,4, GUO Ming-Hua1, ZHAO Yan-Fei2, ZHANG Hui-Min4, PENG Jun-Ping4, XING Ying2, WANG Hui-Chao2, FUJITA Takeshi5, HIRATA Akihiko5, LI Zhi4, DING Hao1, TANG Chen-Jia1,4, WANG Meng4, WANG Qing-Yan1, HE Ke1,3,4, JI Shuai-Hua1, 3, CHEN Xi1,3, WANG Jun-Feng6, XIA Zheng-Cai6, LI Liang6, WANG Ya-Yu1,3, WANG Jian2,3∗∗, WANG Li-Li1,3,4∗∗
1State Key Lab of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084
2International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871
3Collaborative Innovation Center of Quantum Matter, Beijing
4Institute of Physics, Chinese Academy of Sciences, Beijing 100190
5WPI Advanced Institute for Materials Research, Tohoku University, Sendai 9808577, Japan
6Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430071
Download: PDF(1801KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

We prepared one-unit-cell (1-UC) thick FeSe films on insulating SrTiO3 substrates with non-superconducting FeTe protection layers by molecular beam epitaxy for ex situ studies. By direct transport and magnetic measurements, we provide definitive evidence for high temperature superconductivity in the 1-UC FeSe films with an onset TC above 40 K and an extremely large critical current density JC1.7×106 A/cm2 at 2 K, which are much higher than TC8 K and JC104 A/cm2 for bulk FeSe, respectively. Our work may pave the way to enhancing and tailoring superconductivity by interface engineering.

Received: 13 December 2013      Published: 28 January 2014
PACS:  74.25.F- (Transport properties)  
  74.70.Xa (Pnictides and chalcogenides)  
  74.78.-w (Superconducting films and low-dimensional structures)  
Cite this article:   
ZHANG Wen-Hao, SUN Yi, ZHANG Jin-Song et al  2014 Chin. Phys. Lett. 31 017401
URL:       OR

[1] Strongin M et al 1968 Phys. Rev. Lett. 21 1320
[2] Reyren N et al 2007 Science 317 1196
[3] Gozar A et al 2008 Nature 455 782
[4] Kozuka Y et al 2009 Nature 462 487
[5] Pereiro J, Petrovic A, Panagopoulos C and Bozovi? I 2011 Phys. Express 1 208
[6] Zhang T et al 2010 Nat. Phys. 6 104
[7] Uchihashi T, Mishra P, Aono M and Nakayama T 2011 Phys. Rev. Lett. 107 207001
[8] Wang Q Y et al 2012 Chin. Phys. Lett. 29 037402
[9] Liu D et al 2012 Nat. Commun. 3 931
[10] He S et al 2013 Nat. Mater. 12 605
[11] Tan S Y et al 2013 Nat. Mater. 12 634
[12] Hsu F C et al 2008 Proc. Natl. Acad. Sci. USA 105 14262
[13] Lei H C, Hu R W and Petrovic C 2011 Phys. Rev. B 84 014520
[14] Li Q, Si E D and Dimitrov I K 2011 Rep. Prog. Phys. 74 124510
[15] Medvedev S et al 2009 Nat. Mater. 8 630
[16] Claassen J H et al 1991 Rev. Sci. Instrum. 62 996
[17] Si W D et al 2013 Nat. Commun. 4 1347
[18] Gao Z et al 2012 Sci. Rep. 2 998
[19] Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181
[20] Halperin B I and Nelson D R 1979 J. Low Temp. Phys. 36 599

Full text