Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 105201    DOI: 10.1088/0256-307X/30/10/105201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Faraday Effect on Negative Refraction in Uniaxial Anisotropic Plasma Metamaterials
GUO Bin**
School of Science, Wuhan University of Technology, Wuhan 430070 Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T5K 2M3, Canada
Cite this article:   
GUO Bin 2013 Chin. Phys. Lett. 30 105201
Download: PDF(760KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Negative refraction is the name for an electromagnetic phenomenon in which light rays are refracted at an interface in the reverse sense to that normally expected. A uniaxial anisotropic plasma metamaterial that exhibits negative refraction is demonstrated and the necessary conditions are derived for negative refraction. The Faraday effect on the negative refraction in the proposed plasma metamaterials is discussed. Parameter dependences such as plasma filling factor, dielectric constant of background materials, and external magnetic field are calculated and discussed.
Received: 17 June 2013      Published: 21 November 2013
PACS:  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
  42.25.Bs (Wave propagation, transmission and absorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/105201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/105201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Bin
[1] Joannopoulos J D, Johnson S G, Winn J N and Meade R D 2008 Photonic Crystals: Molding the Flow of Light (Princeton: Princeton University)
[2] Nader E and Richard W Z 2006 Metamaterials: Physics and Engineering Explorations (Berlin: Springer)
[3] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[4] John S 1987 Phys. Rev. Lett. 58 2486
[5] Veselago V G 1968 Sov. Phys. Usp. 10 509
[6] Smith D R, Pendry J R and Wiltshier M C K 2004 Science 305 788
[7] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[8] Schilling J 2006 Phys. Rev. E 74 046618
[9] Anthony J H, Leonid A, Scott S H, Kale J F, Dan W, Viktor A P, Evgenii E N, Deborah L S and Claire G 2007 Nat. Mater. 6 946
[10] Hojo H and Mase A 2004 J. Plasma Fusion Res. 80 89
[11] Sakai O, Sakaguchi T and Tachibana K 2007 J. Appl. Phys. 101 073304
[12] Sakai O, Sakaguchi T and Tachibana K 2005 Appl. Phys. Lett. 87 241505
[13] Naito T, Sakai O and Tachibana K 2008 Appl. Phys. Express 1 066003
[14] Guo B 2009 Plasma Sci. Technol. 11 18
[15] Guo B 2009 Phys. Plasmas 16 043508
[16] Sakai O, Sakaguchi T and Tachibana K 2007 Contrib. Plasma Phys. 47 96
[17] Guo B and Qiu X M 2011 J. Electromagn. Waves Appl. 25 785
[18] Yan Y, Xu H, Yu M Y, Ma Y Y, Zhou H B, Tian C L and Shao F Q 2009 Phys. Plasmas 16 102103
[19] Qi L M, Yang Z Q, Lan F, Gao X and Shi Z J 2010 Phys. Plasmas 17 042501
[20] Kong X K, Liu S B, Zhang H F and Li C Z 2010 Phys. Plasmas 17 103506
[21] Fang W L and Dong L F 2010 Phys. Plasmas 17 073506
[22] Guo B and Qiu X M 2012 Optik 123 1390
[23] Guo B, Xie M Q, Qiu X M and Peng L 2012 Phys. Plasmas 19 044505
[24] Guo B, Xie M Q and Peng L 2012 Phys. Plasmas 19 072111
[25] Sakai O and Tachibana K 2012 Plasma Sources Sci. Technol. 21 013001
[26] Sakai O, Naito T and Tachibana K 2010 Phys. Plasmas 17 057102
[27] Sakai O, Naito T, Shimomura T and Tachibana K 2010 Thin Solid Films 518 3444
[28] Guo B 2012 J. Electromagn. Waves Appl. 26 2445
[29] Liu M H, Hu X W, Jiang Z H, Xin P, Gu C L and Pan Y 2001 Chin. Phys. Lett. 18 1225
[30] Gao H M and Fa P T 2008 Chin. Phys. Lett. 25 2562
[31] Xi Y B and Liu Y 2012 Plasma Sci. Technol. 14 5
[32] Chen Y Y, Song Y, Li Z H and He A Z 2011 Chin. Phys. B 20 034201
[33] Tang C J and Zhou L 2009 Acta Phys. Sin. 30 605 (in Chinese)
[34] Lan C H, Liu M H and Hu X W 2009 Chin. Phys. Lett. 26 035204
[35] Grzegorczyk T M, Nikku M, Chen X D, Wu B I and Kong J A 2005 IEEE Trans. Microwave Theory Tech. 53 1443
[36] Choy T C 1999 Effective Medium Theory: Principles and Applications (Oxford: Oxford University)
[37] Milton G W 2002 The Theory of Composites (Cambridge: Cambridge University)
Related articles from Frontiers Journals
[1] Chun-Hua Li, Shao-Wei Wang, Yun-Hao Liu, Zhen-Wei Xia, Xiao-Hui Zhang, Dan-Dan Zou. Extraordinary Electromagnetic Waves in Weakly Relativistic Degenerate Spin-1/2 Magnetized Quantum Plasmas[J]. Chin. Phys. Lett., 2018, 35(4): 105201
[2] SUN Xin-Feng, JIANG Zhong-He, XU Tao, HU Xi-Wei, ZHUANG Ge, WANG Lu, WANG Xiao-Hong. Absolute and Convective Instabilities of Two-Plasmon Decay in an Inhomogeneous Magnetized Plasma[J]. Chin. Phys. Lett., 2015, 32(12): 105201
[3] LIANG Hui-Min, WANG Jing-Quan, WANG Xue, WANG Gui-Mei. Surface Plasmon Interference Lithography Assisted by a Fabry–Perot Cavity Composed of Subwavelength Metal Grating and Thin Metal Film[J]. Chin. Phys. Lett., 2015, 32(10): 105201
[4] PENG Li, GUO Bin, GAO Ming-Xiang, CAI Xin. Negative Refraction in a Lossy Plasma Layer[J]. Chin. Phys. Lett., 2015, 32(06): 105201
[5] ZHANG Xin-Yuan, WANG Lu-Lu, CHEN Zhao, CUI Lu-Na, SHANG Ce, ZHAO Yu-Fang, DUAN Gao-Yan, LIU Jian-Bin, YU Li. The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(5): 105201
[6] LI Xin-Xia, XIANG Nong, GAN Chun-Yun. Effect of Wave Accessibility on Lower Hybrid Wave Current Drive in Experimental Advanced Superconductor Tokamak with H-Mode Operation[J]. Chin. Phys. Lett., 2015, 32(03): 105201
[7] CHEN Shao-Yong, TANG Chang-Jian, ZHANG Xin-Jun. Synergy Current Driven by Combined Lower Hybrid Wave and Different Polarized Electron Cyclotron Wave in Tokamak Plasma[J]. Chin. Phys. Lett., 2013, 30(6): 105201
[8] ZHU Hui, SU Zhen-Peng, ZHENG Hui-Nan. Counter-Streaming Interaction between Fast Magnetosonic Wave and Radiation Belt Electrons[J]. Chin. Phys. Lett., 2013, 30(5): 105201
[9] ZHU Hui, SU Zhen-Peng, ZHENG Hui-Nan. Normal-Angle Dependence of the Interaction between Radiation Belt Electrons and Fast Magnetosonic Waves[J]. Chin. Phys. Lett., 2012, 29(10): 105201
[10] DUAN Wen-Xue, MA Zhi-Wei, and WU Bin. Combining Effects between LHW and IBW Injections on EAST[J]. Chin. Phys. Lett., 2012, 29(8): 105201
[11] LUAN Qi-Bin, SHI Yi-Peng, and WANG Xiao-Gang. Mode Conversion and Whistler Wave Generation on an Alfvén Resonance Layer in High Beta Plasmas[J]. Chin. Phys. Lett., 2012, 29(8): 105201
[12] XIAO Fu-Liang, **, HE Zhao-Guo ZHANG Sai, SU Zhen-Peng, CHEN Liang-Xu, . Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves[J]. Chin. Phys. Lett., 2011, 28(3): 105201
[13] GUO Jun, **, YU Bin, GUO Guang-Hai, ZHAO Bo . Electron Whistler Mode Waves Associated with Collisionless Magnetic Reconnection[J]. Chin. Phys. Lett., 2011, 28(2): 105201
[14] LIANG Hui-Min**, WANG Jing-Quan . Simulation of Interference Nanolithography of Second-Exciting Surface-Plasmon Polartions for Metal Nanograting Fabrication[J]. Chin. Phys. Lett., 2011, 28(1): 105201
[15] ZHANG Sai, XIAO Fu-Liang** . Chorus-Driven Outer Radiation Belt Electron Dynamics at Different L-Shells[J]. Chin. Phys. Lett., 2010, 27(12): 105201
Viewed
Full text


Abstract