Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 078801    DOI: 10.1088/0256-307X/30/7/078801
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Optimization of Metal Coverage on the Emitter in n-Type Interdigitated Back Contact Solar Cells Using a PC2D Simulation
ZHANG Wei1, CHEN Chen1, JIA Rui1*, Janssen G. J. M.2, ZHANG Dai-Sheng1, XING Zhao1, Bronsveld P. C. P.2, Weeber A. W.2, JIN Zhi1, LIU Xin-Yu1
1Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
2ECN Solar Energy, P. O. X1, NL-1755 ZG, Petten, The Netherlands
Cite this article:   
ZHANG Wei, CHEN Chen, JIA Rui et al  2013 Chin. Phys. Lett. 30 078801
Download: PDF(837KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In interdigitated back contact (IBC) solar cells, the metal-electrode coverage on a p-type emitter is optimized by a PC2D simulation. The result shows that the variation of the metal coverage ratio (MCR) will affect both the surface passivation and the electrode-contact properties for the p-type emitter in IBC solar cells. We find that when Rc ranges from 0.08 to 0.16Ω?cm2, the MCR is optimized with a value of 25% and 33%, resulting in a highest energy-conversion efficiency. The dependences of both Voc and fill factor on MCR are simulated in order to explore the mechanism of the IBC solar cells.
Received: 01 April 2013      Published: 21 November 2013
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.jj (Silicon solar cells)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/078801       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/078801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Wei
CHEN Chen
JIA Rui
Janssen G. J. M.
ZHANG Dai-Sheng
XING Zhao
Bronsveld P. C. P.
Weeber A. W.
JIN Zhi
LIU Xin-Yu
[1] Zhao J H, Wang A H, Altermatt P P, Wenham S R and Green M A 1996 Sol. Energy Mater. Sol. Cells 41 87
[2] Cousins P J, Smith D D, Luan H C, Manning J, Dennis T D, Waldhauer A, Wilson K E, Harley G and Muligan W P 2010 The 35th IEEE Photovoltaic Specialists Conference (PVSC) (Honolulu, Hawaii USA 20–25 June 2010) p 000275
[3] Granek F, Hermle M, Reichel C, Schultz-Wittmann O and Glunz S W 2008 The 23rd European Photovoltaic Solar Energy Conference (EUPVSEC) (Valencia, Spain 1–4 September 2008) p 991
[4] Tsunomura Y, Yoshimine Y, Taguchi M, Baba T, Kinoshita T, Kanno H, Sakata H, Maruyama E and Tanaka M 2009 Sol. Energy Mater. Sol. Cells 93 670
[5] Chun G, Kerschaver E V, Robbelein J, Janssens T, Posthuma N, Poortmans J and Mertens R 2010 IEEE Electron Device Lett. 31 576
[6] Woehl R, Krause J, Granek F and Biro D 2011 IEEE Electron Device Lett. 32 345
[7] Bock R, Mau S, Schmidt J and Brendel R 2010 Appl. Phys. Lett. 96 263507
[8] Zhang X, Liu B W, Xia Y 2012 Acta Phys. Sin. 61 187303 (in Chinese)
[9] Peng C, Liang S W, Lee J G, Chiu F L and Cotter J E 2012 The 27rd European Photovoltaic Solar Energy Conference (EUPVSEC) (Frankfurt, German 24–28 September 2005) p 1296
[10] F Granek 2009 PhD Dissertation (Fraunhofer Institute for Solar Energy System)
[11] Basore P A and Cabanas-Holmen K 2011 IEEE J. Photovoltaics 1 72
[12] Kim U C and Jiang X Q 2012 Chin. Phys. Lett. 29 067301
[13] Cabanas-Holmen K and Basore P A 2012 The 27rd European Photovoltaic Solar Energy Conference (EUPVSEC) (Frankfurt, German 24–28 September 2005) p 1462
[14] Wenham S R, Green M A, Watt M E and Corkish R 2007 Applied Photovaltaics (UK: Earthscan) p 51
Related articles from Frontiers Journals
[1] Zihan Qu, Fei Ma, Yang Zhao, Xinbo Chu, Shiqi Yu, and Jingbi You. Updated Progresses in Perovskite Solar Cells[J]. Chin. Phys. Lett., 2021, 38(10): 078801
[2] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 078801
[3] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 078801
[4] Ao Zhang, Yun-Lin Chen, Chun-Xiu Zhang, Jun Yan. CH$_{3}$NH$_{3}$ Formed by Electron Injection at Heterojunction Inducing Peculiar Properties of CH$_{3}$NH$_{3}$PbI$_{3}$ Material[J]. Chin. Phys. Lett., 2019, 36(2): 078801
[5] Gang Li, Hong-Wei Cheng, Li-Fang Guo, Kai-Ying Wang, Zai-Jun Cheng. An Efficiency Enhanced Graphene/n-Si Schottky Junction for Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 078801
[6] Yue Zhang, Cao Yu, Miao Yang, Lin-Rui Zhang, Yong-Cai He, Jin-Yan Zhang, Xi-Xiang Xu, Yong-Zhe Zhang, Xue-Mei Song, Hui Yan. Significant Improvement of Passivation Performance by Two-Step Preparation of Amorphous Silicon Passivation Layers in Silicon Heterojunction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(3): 078801
[7] Tao Li, Chun-Lan Zhou, Wen-Jing Wang. Comprehensive Study of SF$_{6}$/O$_{2}$ Plasma Etching for Mc-Silicon Solar Cells[J]. Chin. Phys. Lett., 2016, 33(03): 078801
[8] Bushra Mohamed Omer. Effect of Valence Band Tail Width on the Open Circuit Voltage of P3HT:PCBM Bulk Heterojunction Solar Cell: AMPS-1D Simulation Study[J]. Chin. Phys. Lett., 2015, 32(08): 078801
[9] LU Jian-Ya, ZHENG Xin-He, WANG Nai-Ming, CHEN Xi, LI Bao-Ji, LU Shu-Long, YANG Hui. GaNAs/InGaAs Superlattice Solar Cells with High N Content in the Barrier Grown by All Solid-State Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2015, 32(5): 078801
[10] LI Tao, WANG Wen-Jing. Calculated and Experimental Research of Sheet Resistances of Laser-Doped Silicon Solar Cells[J]. Chin. Phys. Lett., 2015, 32(02): 078801
[11] XIAO Wen-Bo, LIU Wei-Qing, HE Xing-Dao. Analysis of Electron Recombination in Dye Sensitized Solar Cells Based on the Forward Bias Dependence of Dark Current and Electroluminescence Characterization[J]. Chin. Phys. Lett., 2013, 30(10): 078801
[12] ZHANG Chun-Lei, DU Hui-Jing, ZHU Jian-Zhuo, XU Tian-Fu, FANG Xiao-Yong. Enhanced Photovoltaic Properties of Gradient Doping Solar Cells[J]. Chin. Phys. Lett., 2012, 29(12): 078801
Viewed
Full text


Abstract