Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 077302    DOI: 10.1088/0256-307X/29/7/077302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Controllable Excitation of Surface Plasmons in End-to-Trunk Coupled Silver Nanowire Structures
ZHU Yin, WEI Hong, YANG Peng-Fei, XU Hong-Xing**
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, P.O. Box 603-146, Beijing 100190
Cite this article:   
ZHU Yin, WEI Hong, YANG Peng-Fei et al  2012 Chin. Phys. Lett. 29 077302
Download: PDF(1132KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In branched nanowire structures, the controllable excitation of surface plasmons is investigated by both experiments and simulations. By focusing the excitation light at the junction between the main wire and the branch wire, surface plasmons can be selectively launched to propagate to different output terminals, depending on the polarization of the excitation light. The parameters influencing the plasmon excitation and thus emission behavior are investigated, including the branch angle, the position of the branch and the nanowire radius. The different polarization dependence of the output light is determined by the surface plasmon modes selectively excited in the junction through end-excitation or/and gap-excitation manners. For the branch wire, when the branch angle is small, the end-excitation is dominant, which makes the branched wire behave like an individual nanowire. With the increase of the branch angle, the coupling between the branch wire end and the primary wire trunk is increased, which influences the plasmon excitation in the branch wire as evidenced by the rotation of the polarization angle for maximum output. For the primary wire, the SP excitation is dependent on the branch angle, position of the junction along the primary wire, and the radii of the nanowires. The results may be important for the design of a controllable surface plasmon launcher, one of the functional components in surface-plasmon-based nanophotonic circuits.
Received: 05 April 2012      Published: 29 July 2012
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.25.Ja (Polarization)  
  78.67.Uh (Nanowires)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/077302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/077302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Yin
WEI Hong
YANG Peng-Fei
XU Hong-Xing
[1] Xu H X, Bjerneld E J, Kall M and Borjesson L 1999 Phys. Rev. Lett. 83 4357
[2] Xu H X, Aizpurua J, Kall M and Apell P 2000 Phys. Rev. E 62 4318
[3] Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828
[4] Ma X, Xu X, Zheng Z, Wang K, Su Y, Fan J, Zhang R, Song L, Wang Z and Zhu J 2010 Sens. Actuators A-Phys. 157 9
[5] Xu H X and Kall M 2002 Phys. Rev. Lett. 89 246802
[6] Juan M L, Righini M and Quidant R 2011 Nature Photon. 5 349
[7] Berini P and De Leon I 2012 Nature Photon. 6 16
[8] Ozbay E 2006 Science 311 189
[9] Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J and Xu H X 2010 Nano Lett. 10 1950
[10] Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J and Xu H X 2011 Nano Lett. 11 471
[11] Wei H, Wang Z X, Tian X R, Kall M and Xu H X 2011 Nature Commun. 2 387
[12] Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K and Tong L M 2009 Nano Lett. 9 4515
[13] Kim N C, Li J B, Yang Z J, Hao Z H and Wang Q Q 2010 Appl. Phys. Lett. 97 061110
[14] Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C and Garcia-Vidal F J 2011 Phys. Rev. Lett. 106 020501
[15] Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R and Krenn J R 2005 Phys. Rev. Lett. 95 257403
[16] Sanders A W, Routenberg D A, Wiley B J, Xia Y N, Dufresne E R and Reed M A 2006 Nano Lett. 6 1822
[17] Knight M W, Grady N K, Bardhan R, Hao F, Nordlander P and Halas N J 2007 Nano Lett. 7 2346
[18] Fang Y R, Wei H, Hao F, Nordlander P and Xu H X 2009 Nano Lett. 9 2049
[19] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
[20] Wei H, Ratchford D, Li X Q, Xu H X and Shih C K 2009 Nano Lett. 9 4168
[21] Kolesov R, Grotz B, Balasubramanian G, Stohr R J, Nicolet A A L, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nature Phys. 5 470
[22] Li Q, Wang S S, Chen Y T, Yan M, Tong L M and Qiu M 2011 IEEE J. Sel. Top. Quantum Electron. 17 1107
[23] Li Z P, Hao F, Huang Y Z, Fang Y R, Nordlander P and Xu H X 2009 Nano Lett. 9 4383
[24] Shegai T, Miljkovic V D, Bao K, Xu H X, Nordlander P, Johansson P and Kall M 2011 Nano Lett. 11 706
[25] Li Z P, Bao K, Fang Y R, Huang Y Z, Nordlander P and Xu H X 2010 Nano Lett. 10 1831
[26] Shegai T, Huang Y Z, Xu H X and Kall M 2010 Appl. Phys. Lett. 96 103114
[27] Wang W H, Yang Q, Fan F R, Xu H X and Wang Z L 2011 Nano Lett. 11 1603
[28] Li Z P, Bao K, Fang Y R, Guan Z Q, Halas N J, Nordlander P and Xu H X 2010 Phys. Rev. B 82 241402
[29] Allione M, Temnov V V, Fedutik Y, Woggon U and Artemyev M V 2008 Nano Lett. 8 31
[30] Rewitz C, Keitzl T, Tuchscherer P, Huang J, Geisler P, Razinskas G, Hecht B and Brixner T 2012 Nano Lett. 12 45
[31] Li Z P, Zhang S P, Halas N J, Nordlander P and Xu H X 2011 Small 7 593
[32] Sun Y G and Xia Y N 2002 Adv. Mater. 14 833
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 077302
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 077302
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 077302
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 077302
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 077302
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 077302
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 077302
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 077302
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 077302
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 077302
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 077302
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 077302
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 077302
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 077302
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 077302
Viewed
Full text


Abstract