Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 098501    DOI: 10.1088/0256-307X/28/9/098501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Influence of Size of ZnO Nanorods on Light Extraction Enhancement of GaN-Based Light-Emitting Diodes
DAI Ke-Hui1,4**, WANG Lian-Shan2**, HUANG De-Xiu1, SOH Chew-Beng3, CHUA Soo-Jin3,4
1Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
2College of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
3Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602, Singapore
4Centre for Optoelectronics, Department of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
Cite this article:   
DAI Ke-Hui, WANG Lian-Shan, HUANG De-Xiu et al  2011 Chin. Phys. Lett. 28 098501
Download: PDF(2494KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the influence of size of ZnO nanorods on the light extraction efficiency (LEE) enhancement of GaN-based light-emitting diodes (GaN-LEDs). ZnO nanorods with different sizes are hydrothermally grown on patterned indium-doped tin oxide (ITO) electrodes of the GaN-LEDs in zinc acetate aqueous solutions of different concentrations. Measurements are conducted for the LEE enhancement of the LEDs with ZnO nanorods, compared to these without ZnO nanorods. The results suggest that the LEE of the LEDs with ZnO nanorods increases with the increasing size of ZnO nanorods. However, a saturation trend for the LEE improvement is also observed, which is attributed to the maximum limitation of light coupled into ZnO nanorods from GaN-based LEDs, and the reflection is increased by the increasing top surface of the ZnO nanorods.
Keywords: 85.60.Jb      81.15.Gh      81.40.Tv      71.55.Eq     
Received: 03 April 2011      Published: 30 August 2011
PACS:  85.60.Jb (Light-emitting devices)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.40.Tv (Optical and dielectric properties related to treatment conditions)  
  71.55.Eq (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/098501       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/098501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DAI Ke-Hui
WANG Lian-Shan
HUANG De-Xiu
SOH Chew-Beng
CHUA Soo-Jin
[1] Horng R H, Yang C C, Wu J Y, Huang S H, Lee C E and Wuu D S, 2005 Appl. Phys. Lett. 86 221101
[2] McGroddy K, David A, Matioli E, Iza M, Nakamura S, DenBaars S, Speck J S, Weisbuch C and Hu E L 2008 Appl. Phys. Lett. 93 103502
[3] Ryu H Y and Shim J I 2010 IEEE J. Quantum Electron. 46 714
[4] Gao H, Yan F, Zhang Y, Li J, Zeng Y and Wang G 2008 J. Appl. Phys. 103 014314
[5] Chang C T, Hsiao S K, Chang E Y, Hsiao Y L, Huang J C, Lu C Y, Chang H C, Cheng K W and Lee C T 2009 IEEE Photon. Technol. Lett. 21 1366
[6] Kim H, Lee S N, Park Y, Kim K K, Kwak J S and Seong T Y 2008 J. Appl. Phys. 104 053111
[7] Jang D H, Shim J I and Shin D S 2009 IEEE Photon. Technol. Lett. 21 760
[8] Zhong J, Chen H, Saraf G, Lu Y, Choi C K, Song J J, Mackie D M and Shen H 2007 Appl. Phys. Lett. 90 203515
[9] An S J, Chae J H, Yi G C and Park G H 2008 Appl. Phys. Lett. 92 121108
[10] Kim K K, Lee S D, Kim H, Park J C, Lee S N, Park Y, Park S J and Kim S W 2009 Appl. Phys. Lett. 94 071118
[11] Dalui S, Lin C C, Lee H Y, Chao C H and Lee C T 2010 IEEE Photon. Technol. Lett. 22 1220
[12] Dai K, Soh C B, Jin C S, Wang L and Huang D 2011 J. Appl. Phys. 109 083110
[13] Peter K H H, Stephen D, Thomas, Friend R H and Tessler N 1999 Science 285 233
Related articles from Frontiers Journals
[1] HU Shao-Xu,HAN Pei-De**,GAO Li-Peng,MAO Xue,LI Xin-Yi,FAN Yu-Jie. The Effects of Femtosecond Laser Irradiation and Thermal Annealing on the Optoelectronic Properties of Silicon Supersaturated with Sulfur[J]. Chin. Phys. Lett., 2012, 29(4): 098501
[2] SANG Ling, LIU Jian-Ming, XU Xiao-Qing, WANG Jun, ZHAO Gui-Juan, LIU Chang-Bo, GU Cheng-Yan, LIU Gui-Peng, WEI Hong-Yuan, LIU Xiang-Lin, YANG Shao-Yan, ZHU Qin-Sheng, WANG Zhan-Guo. Morphological Evolution of a-GaN on r-Sapphire by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2012, 29(2): 098501
[3] BI Zhi-Wei, HAO Yue, FENG Qian, GAO Zhi-Yuan, ZHANG Jin-Cheng, MAO Wei, ZHANG Kai, MA Xiao-Hua, LIU Hong-Xia, YANG Lin-An, MEI Nan, CHANG Yong-Ming. AlGaN/GaN Metal-Insulator-Semiconductor High Electron-Mobility Transistor Using a NbAlO/Al2O3 Laminated Dielectric by Atomic Layer Deposition[J]. Chin. Phys. Lett., 2012, 29(2): 098501
[4] ZENG Chang, ZHANG Shu-Ming**, WANG Hui, LIU Jian-Ping, WANG Huai-Bing, LI Zeng-Cheng, FENG Mei-Xin, ZHAO De-Gang, LIU Zong-Shun, JIANG De-Sheng, YANG Hui. Formation of Low-Resistant and Thermally Stable Nonalloyed Ohmic Contact to N-Face n-GaN[J]. Chin. Phys. Lett., 2012, 29(1): 098501
[5] SANG Ling**, WANG Jun**, SHI Kai, WEI Hong-Yuan, JIAO Chun-Mei, LIU Xiang-Lin, YANG Shao-Yan, ZHU Qin-Sheng, WANG Zhan-Guo. The Growth of Semi-Polar ZnO (10[J]. Chin. Phys. Lett., 2012, 29(1): 098501
[6] JI Chang-Jian**, ZHANG Cheng-Qiang, ZHAO Gang, WANG Wen-Jing, SUN Gang, YUAN Hui-Min, HAN Qi-Feng . Preparation and Properties of Diluted Magnetic Semiconductors GaMnAs by Low-Temperature Molecular Epitaxy[J]. Chin. Phys. Lett., 2011, 28(9): 098501
[7] LI Zhe-Yang, **, HAN Ping, LI Yun, NI Wei-Jiang, BAO Hui-Qiang, LI Yu-Zhu . Epitaxial Growth of 4H-SiC on 4° Off-Axis Substrate for Power Devices[J]. Chin. Phys. Lett., 2011, 28(9): 098501
[8] XIE Zi-Li**, ZHANG Rong, LIU Bin, XIU Xiang-Qian, SU Hui, LI Yi, HUA Xue-Mei, ZHAO Hong, CHEN Peng, HAN Ping, SHI Yi, ZHENG You-Dou . Growth and Properties of Blue and Amber Complex Light Emitting InGaN/GaN Multi-Quantum Wells[J]. Chin. Phys. Lett., 2011, 28(8): 098501
[9] U. Yesilgul**, F. Ungan, E. Kasapoglu, H. Sari, I. Sö, kmen . Effects of an Intense Laser Field and Hydrostatic Pressure on the Intersubband Transitions and Binding Energy of Shallow Donor Impurities in a Quantum Well[J]. Chin. Phys. Lett., 2011, 28(7): 098501
[10] CHENG Zai-Jun, SAN Hai-Sheng**, CHEN Xu-Yuan, **, LIU Bo, FENG Zhi-Hong . Demonstration of a High Open-Circuit Voltage GaN Betavoltaic Microbattery[J]. Chin. Phys. Lett., 2011, 28(7): 098501
[11] WU Meng, **, ZENG Yi-Ping, , WANG Jun-Xi, HU Qiang . Investigation of a GaN Nucleation Layer on a Patterned Sapphire Substrate[J]. Chin. Phys. Lett., 2011, 28(6): 098501
[12] WANG Yong, **, YU Nai-Sen, LI Ming, LAU Kei-May . Improved AlGaN/GaN HEMTs Grown on Si Substrates Using Stacked AlGaN/AlN Interlayer by MOCVD[J]. Chin. Phys. Lett., 2011, 28(5): 098501
[13] SHI Feng, , ZHANG Yi-Jun, CHENG Hong-Chang, ZHAO Jing, XIONG Ya-Juan, CHANG Ben-Kang** . Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes[J]. Chin. Phys. Lett., 2011, 28(4): 098501
[14] LIAN Jia-Rong**, NIU Fang-Fang, LIU Ya-Wei, ZENG Peng-Ju . Improved Hole-Blocking and Electron Injection Using a TPBI Interlayer at the Cathode Interface of OLEDs[J]. Chin. Phys. Lett., 2011, 28(4): 098501
[15] CHEN Yao**, JIANG Yang, XU Pei-Qiang, MA Zi-Guang, WANG Xiao-Li, WANG Lu, JIA Hai-Qiang, CHEN Hong . Stress Control in GaN Grown on 6H-SiC by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(4): 098501
Viewed
Full text


Abstract