Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 050203    DOI: 10.1088/0256-307X/28/5/050203
GENERAL |
Analytical Solution of Fick's Law of the TRISO-Coated Fuel Particles and Fuel Elements in Pebble-Bed High Temperature Gas-Cooled Reactors
CAO Jian-Zhu, FANG Chao**, SUN Li-Feng
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084
Cite this article:   
CAO Jian-Zhu, FANG Chao, SUN Li-Feng 2011 Chin. Phys. Lett. 28 050203
Download: PDF(776KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two kinds of approaches are built to solve the fission products diffusion models (Fick's equation) based on sphere fuel particles and sphere fuel elements exactly. Two models for homogenous TRISO-coated fuel particles and fuel elements used in pebble-bed high temperature gas-cooled reactors are presented, respectively. The analytical solution of Fick's equation for fission products diffusion in fuel particles is derived by variables separation. In the fuel element system, a modification of the diffusion coefficient from D to D/r is made to characterize the difference of diffusion rates in distinct areas and it is shown that the Laplace and Hankel transformations are effective as the diffusion coefficient in Fick's equation is dependant on the radius of the fuel element. Both the solutions are useful for the prediction of the fission product behaviors and could be programmed in the corresponding engineering calculations.
Keywords: 02.30.Jr      02.30.Uu      28.41.Bm     
Received: 25 October 2010      Published: 26 April 2011
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Uu (Integral transforms)  
  28.41.Bm (Fuel elements, preparation, reloading, and reprocessing)  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/050203       OR      http://cpl.iphy.ac.cn/Y2011/V28/I5/050203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Jian-Zhu
FANG Chao
SUN Li-Feng
[1] Hayashi K and Fukuda K 1989 J. Nucl. Mater. 168 328
[2] Schenk W, Pott G and Nabielek H 1990 J. Nucl. Mater. 171 19
[4] Stansfield O M, Scott C B and Chin J 1975 Nucl. Technol. 25 517
[5] Miller G K, Petti D A, Varacalle D J and Maki J T 2001 J. Nucl. Mater. 295 205
[6] Lauf R J, Lindemer T B and Pearson R L 1984 J. Nucl. Mater. 120 6
[7] Duderstadt J J and Martin W R 1979 Transport Theory (New York: Wiley)
[8] Amian W and Stover D 1982 Nucl. Technol. 59 279
[9] Brown P E and Faircloth R L 1976 J. Nucl. Mater. 59 29
[10] Kurata Y K and Iwamoto K 1981 J. Nucl. Mater. 98 107
[11] Smith C L 1979 J. Am. Ceram. Soc. 62 607
[12] Smith P D, Steinke R G and Jensen D D 1977 Nucl. Technol. 34 475
[13] You K M, Wen S C, Chen L Z, Wang Y W and Hu Y H 2009 Chin. Phys. B 18 3893
[14] IAEA-TECDOC-978 1997 International Atomic Energy Agency
[15] Iwamoto K, Kashimura S and Kikuchi A 1972 J. Nucl. Sci. Technol. 9 465
[16] Jost W 1960 Diffusion in Solids, Liquids, Gases (New York: Academic)
[17] Debnathand L and Bhatta D 2007 Integral Transforms and Their Applications (Texas: Chapman & Hall)
Related articles from Frontiers Journals
[1] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 050203
[2] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 050203
[3] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 050203
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 050203
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 050203
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 050203
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 050203
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 050203
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 050203
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 050203
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 050203
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 050203
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 050203
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 050203
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 050203
Viewed
Full text


Abstract