Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 371-374    DOI:
Original Articles |
Multiple System-Decomposition Method for Avoiding Quantum Decoherence
J. Jeknic-Dugic1;M. Dugic2
1Department of Physics, Faculty of Science, Nis, Serbia2Department of Physics, Faculty of Science, Kragujevac, Serbia
Cite this article:   
J. Jeknic-Dugic, M. Dugic 2008 Chin. Phys. Lett. 25 371-374
Download: PDF(99KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Decomposition of a composite system C into different subsystems, A + B or
D + E, may help in avoiding decoherence. For example, the environment-induced decoherence for an A + B system need not destroy entanglement present in the D + E system (A + B = C = D + E). This new approach opens some questions also in the foundations of the quantum computation theory that might eventually lead to a new model of quantum computation.
Keywords: 03.65.Yz      03.67.Mn      03.67.Lx     
Received: 23 March 2007      Published: 30 January 2008
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Lx (Quantum computation architectures and implementations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0371
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
J. Jeknic-Dugic
M. Dugic
[1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)
[2] Zurek W H 1982 Phys. Rev. D 26 1862
[3] Dugi c M 1997 Physica Scripta 56 560
[4] Giulini D, Joos E, Kiefer C, Kupsch J, Stamatesku I O andZeh H D 1996 Decoherence and the Appearance of a ClassicalWorld in Quantum Theory (Berlin: Springer)
[5] von Neumann J 1955 Mathematical Foundations of QuantumMechanics (Princeton: Princeton University Press)
[6] d'Espagnat B 1971 Conceptual Foundations of QuantumMechanics (Reading, MA: Benjamin)
[7] Wheeler J A and Zurek W H 1983 Quantum Theory ofMeasurement (Princeton: Princeton University Press)
[8] Kraus K 1983 States, Effects, and Operations(Berlin: Springer)
[9] Shor P 1995 Phys. Rev. A 52 2493
[10] Steane A M 1996 Phys. Rev. Lett. 77 793
[11] Gottesman D 1996 Phys. Rev. A 54 1862
[12] Zanardi P and Rasetti M 1998 Phys. Rev. Lett. 79 3306
[13] Knill E, Laflamme R and Viola L 1999 eprint arXivequant-ph/9908066
[14] Dugi c M 2000 Quantum Computers and Computing 1 102
[15] Dugi c M, Jekni c J 2006 Int. J. Theor. Phys. 45 2215
[16] Dugi c M, Jekni c-Dugi c J 2007 Int. J.Theor. Phys. (online-first, August 2007: DOI10.1007/s10773-007-9504-1)
[17] Graham R and Miyazaki S 1996 Phys. Rev. A 532683
[18] Bartlett S D and Wiseman H M 2003 eprint arXivequant-ph/0303140
[19] Childs A M, Leung D W and Nielsen M A 2005 Phys.Rev. A 71 032318
[20] Brukner \v C, Kim M S, Pan J W and Zeilinger A 2003 Phys. Rev. A 68 062105
Related articles from Frontiers Journals
[1] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 371-374
[2] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 371-374
[3] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 371-374
[4] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 371-374
[5] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 371-374
[6] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 371-374
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 371-374
[8] CHEN Liang, WAN Wei, XIE Yi, ZHOU Fei, FENG Mang. Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing[J]. Chin. Phys. Lett., 2012, 29(3): 371-374
[9] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 371-374
[10] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 371-374
[11] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 371-374
[12] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 371-374
[13] HOU Shi-Yao, CUI Jing-Xin, LI Jun-Lin** . Experimental Realization of Braunstein's Weight-Decision Algorithm[J]. Chin. Phys. Lett., 2011, 28(9): 371-374
[14] XIE Yi, ZHOU Fei, CHEN Liang, WAN Wei, FENG Mang** . Micromotion Compensation and Photoionization of Ions in a Linear Trap[J]. Chin. Phys. Lett., 2011, 28(9): 371-374
[15] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 371-374
Viewed
Full text


Abstract