Chin. Phys. Lett.  2022, Vol. 39 Issue (11): 117501    DOI: 10.1088/0256-307X/39/11/117501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices
Wanfei Shan1, Jiangtao Du1, and Weidong Luo1,2*
1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article:   
Wanfei Shan, Jiangtao Du, and Weidong Luo 2022 Chin. Phys. Lett. 39 117501
Download: PDF(6554KB)   PDF(mobile)(6955KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Lattice superlattices constructed with different materials such as ferromagnets and insulators at atomic scale provide an ideal platform for exploring many emergent physical phenomena. In the present work, a new type of superlattices composed of ferromagnetic half-metal CrO$_2$, with a thickness of two atomic layers, together with insulating MgH$_2$ are constructed. Systematic theoretical studies on the (CrO$_2$)$_2$/(MgH$_2$)$_n$ ($n = 2, 3, 4, 5, 6$) superlattices are carried out based on first-principles density-functional theory calculations. These superlattices are ferromagnetic semiconductors with similar intra-layer magnetic exchange couplings between Cr ions. As the thickness of the MgH$_2$ layer increases, the magnetic exchange interaction between inter-layer Cr ions shows oscillating decaying behavior, while the energy band gaps show a small increase. The understanding of magnetic couplings in these superlattices provides a pathway for constructing new ferromagnetic semiconductors.
Received: 18 August 2022      Published: 26 October 2022
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.50.Dd (Nonmetallic ferromagnetic materials)  
  75.30.Et (Exchange and superexchange interactions)  
  75.50.Pp (Magnetic semiconductors)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/11/117501       OR      https://cpl.iphy.ac.cn/Y2022/V39/I11/117501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wanfei Shan
Jiangtao Du
and Weidong Luo
[1] Borges P D, Scolfaro L M, Alves H W L, Silva E F D, and Assali L V C 2011 Nanoscale Res. Lett. 6 146
[2] Miao G X, LeClair P, Gupta A, Xiao G, Varela M, and Pennycook S 2006 Appl. Phys. Lett. 89 022511
[3] Maekawa K, Takizawa M, Wadati H, Yoshida T, Fujimori A, Kumigashira H, Oshima M, Muraoka Y, Nagao Y, and Hiroi Z 2007 Phys. Rev. B 76 115121
[4] Shibuya K, Kawasaki M, and Tokura Y 2010 Phys. Rev. B 82 205118
[5] Kawasaki J K, Baek D, Paik H, Nair H P, Kourkoutis L F, Schlom D G, and Shen K M 2018 Phys. Rev. Mater. 2 054206
[6] Ming X, Yamauchi A T O K, and Picozzi S 2017 arXiv:1702.04408
[7] Cai T, Li X, Wang F, Ju S, Feng J, and Gong C D 2015 Nano Lett. 15 6434
[8] Huang H, Liu Z, Zhang H, Duan W, and Vanderbilt D 2015 Phys. Rev. B 92 161115(R)
[9] Pardo V and Pickett W E 2009 Phys. Rev. Lett. 102 166803
[10] Lado J L, Guterding D, Barone P, Valentí R, and Pardo V 2016 Phys. Rev. B 94 235111
[11] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, and Treger D M 2001 Science 294 1488
[12] Dietl T 2002 Semicond. Sci. Technol. 17 377
[13] Charap S H and Boyd E L 1964 Phys. Rev. 133 A811
[14] Ohno H 1998 Science 281 951
[15] Huang B, Clark G, Navarro-Moratalla D R, Klein E, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270
[16] Yang K, Fan F, Wang H, Khomskii D I, and Wu H 2020 Phys. Rev. B 101 100402(R)
[17] Li X and Yang J 2014 J. Mater. Chem. C 2 7071
[18] Anderson P W 1950 Phys. Rev. 79 350
[19] Goodenough J B 1955 Phys. Rev. 100 564
[20] Kanamori J 1959 J. Phys. Chem. Solids 10 87
[21] Whangbo M H, Koo H J, and Dai D 2003 J. Solid State Chem. 176 417
[22] Whangbo M H, Dai D, and Koo H J 2005 Solid State Sci. 7 827
[23] Rao G N, Sankar R, Singh A, Muthuselvam I P, Chen W T, Singh V N, Guo G Y, and Chou F C 2016 Phys. Rev. B 93 104401
[24] Muthuselvam I P, Sankar R, Ushakov A V, Rao G N, Streltsov S V, and Chou F C 2014 Phys. Rev. B 90 174430
[25] Hasegawa K, Isobe M, Yamauchi T, Ueda H, Yamaura J I, Gotou H, Yagi T, Sato H, and Ueda Y 2009 Phys. Rev. Lett. 103 146403
[26] Gupta A, Li X W, Guha S, and Xiao G 1999 Appl. Phys. Lett. 75 2996
[27] Yu R and Lam P K 1988 Phys. Rev. B 37 8730
[28] Vajeeston P, Ravindran P, Kjekshus A, and Fjellvåg H 2002 Phys. Rev. Lett. 89 175506
[29] Pfrommer B, Elsässer C, and Fähnle M 1994 Phys. Rev. B 50 5089
[30] Shimizu R, Kakinokizono T, Gu I, and Hitosugi T 2019 Inorg. Chem. 58 15354
[31] Komatsu Y, Shimizu R, Wilde M, Kobayashi S, Sasahara Y, Nishio K, Shigematsu K, Ohtomo A, Fukutani K, and Hitosugi T 2020 Cryst. Growth & Des. 20 5903
[32] Bennett B R, Shanabrook B V, and Glaser E R 1994 Appl. Phys. Lett. 65 598
[33] Nicolini R, Vanzetti L, Mula G, Bratina G, Sorba L, Franciosi A, Peressi M, Baroni S, Resta R, Baldereschi A, Angelo J E, and Gerberich W W 1994 Phys. Rev. Lett. 72 294
[34] Heun S, Paggel J J, Sorba L, Rubini S, Franciosi A, Bonard J M, and Ganière J D 1997 J. Vac. Sci. & Technol. B 15 1279
[35] Park K and Alberi K 2017 Sci. Rep. 7 8516
[36] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[37] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[38] Blöchl P E 1994 Phys. Rev. B 50 17953
[39] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[40] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[41] Anisimov V I, Zaanen J, and Andersen O K 1991 Phys. Rev. B 44 943
[42] Korotin M A, Anisimov V I, Khomskii D I, and Sawatzky G A 1998 Phys. Rev. Lett. 80 4305
[43] Chioncel L, Allmaier H, Arrigoni E, Yamasaki A, Daghofer M, Katsnelson M I, and Lichtenstein A I 2007 Phys. Rev. B 75 140406
[44] Tsujioka T, Mizokawa T, Okamoto J, Fujimori A, Nohara M, Takagi H, Yamaura K, and Takano M 1997 Phys. Rev. B 56 R15509
[45] Noritake T, Towata S, Aoki M, Seno Y, Hirose Y, Nishibori E, Takata M, and Sakata M 2003 J. Alloys Compd. 356 84
[46] Sun J, Ruzsinszky A, and Perdew J P 2015 Phys. Rev. Lett. 115 036402
[47] Gautam G S and Carter E A 2018 Phys. Rev. Mater. 2 095401
[48] Marzari N, Mostofi A A, Yates J R, Souza I, and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[49] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2014 Comput. Phys. Commun. 185 2309
[50] Solovyev I V, Kashin I V, and Mazurenko V V 2015 Phys. Rev. B 92 144407
[51] Fan L L, Chen S, Luo Z L, Liu Q H, Wu Y F, Song L, Ji D X, Wang P, Chu W S, Gao C, Zou C W, and Wu Z Y 2014 Nano Lett. 14 4036
[52] Toriyama T, Nakao A, Yamaki Y, Nakao H, Murakami Y, Hasegawa K, Isobe M, Ueda Y, Ushakov A V, Khomskii D I, Streltsov S V, Konishi T, and Ohta Y 2011 Phys. Rev. Lett. 107 266402
Related articles from Frontiers Journals
[1] Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song. Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures[J]. Chin. Phys. Lett., 2022, 39(4): 117501
[2] Jiahao Liu, Zidong Wang, Teng Xu, Hengan Zhou, Le Zhao, Soong-Guen Je, Mi-Young Im, Liang Fang, and Wanjun Jiang. The 20-nm Skyrmion Generated at Room Temperature by Spin-Orbit Torques[J]. Chin. Phys. Lett., 2022, 39(1): 117501
[3] Huaixiang Wang, Jinghua Song, Weipeng Wang, Yuansha Chen, Xi Shen, Yuan Yao, Junjie Li, Jirong Sun, and Richeng Yu. Magnetic Anisotropy Induced by Orbital Occupation States in La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ Films[J]. Chin. Phys. Lett., 2021, 38(8): 117501
[4] Qingwei Fu, Kaiyuan Zhou, Lina Chen, Yongbing Xu, Tiejun Zhou, Dunhui Wang, Kequn Chi, Hao Meng, Bo Liu, Ronghua Liu, and Youwei Du. Field- and Current-Driven Magnetization Reversal and Dynamic Properties of CoFeB-MgO-Based Perpendicular Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2020, 37(11): 117501
[5] Jin Yang, Jian Li, Liangzhong Lin, and Jia-Ji Zhu. An Origin of Dzyaloshinskii–Moriya Interaction at Graphene-Ferromagnet Interfaces Due to the Intralayer RKKY/BR Interaction[J]. Chin. Phys. Lett., 2020, 37(8): 117501
[6] Li-Peng Jin, Yong-Jun Liu. Magnetization Reversal in Magnetic Bilayer Systems[J]. Chin. Phys. Lett., 2019, 36(6): 117501
[7] Yi Liu, Tao Yu, Zheng-Yong Zhu, Hui-Cai Zhong, Kai-Gui Zhu. Effects of MgO Thickness and Roughness on Perpendicular Magnetic Anisotropy in MgO/CoFeB/Ta Multilayers[J]. Chin. Phys. Lett., 2016, 33(10): 117501
[8] CHENG Ji-Hua, WANG Yin-Gang, XIE Dan. Interface Effects on the Magnetoelectric Properties of Magnetoelectric Multilayer Composites[J]. Chin. Phys. Lett., 2015, 32(01): 117501
[9] LUO Zhi-Yuan, TANG Jia, MA Bin, ZHANG Zong-Zhi, JIN Qing-Yuan, WANG Jian-Ping. Influence of Film Roughness on the Soft Magnetic Properties of Fe/Ni Multilayers[J]. Chin. Phys. Lett., 2012, 29(12): 117501
[10] LEI Jie-Mei, XU Xiao-Liang, LIU Ling, YIN Nai-Qiang, ZHU Li-Xin. Preparation and Characterization of Bimodal Magnetofluorescent Nanoprobes for Biomedical Application[J]. Chin. Phys. Lett., 2012, 29(9): 117501
[11] ZHOU Guang-Hong, **, ZHU Yu-Fu, LIN Yue-Bin . Thermal Decay and Reversal of Exchange Bias Field of CoFe/PtMn Bilayer after Ga+ Irradiation[J]. Chin. Phys. Lett., 2011, 28(5): 117501
[12] TANG Jia, MA Bin, ZHANG Zong-Zhi, JIN Qing-Yuan. Structural and Magnetic Properties of [Fe/Ni]N Multilayers[J]. Chin. Phys. Lett., 2010, 27(7): 117501
[13] HUANG Ming, ZHOU Yue-Qun, SHEN Ting-Gen. Left-Handed Effect of Composite Rectangular SRRs and Its Application in Patch Antennae[J]. Chin. Phys. Lett., 2010, 27(1): 117501
[14] FA Tao, XIANG Qing-Pei, YAO Shu-De. Fabrication of Co/CoO Exchange Bias System by Ion Implantation and Its Magnetic Properties[J]. Chin. Phys. Lett., 2009, 26(12): 117501
[15] LU Ran, FANG Xiao-Yong, KANG Yu-Qing, YUAN Jie, CAO Mao-Sheng. Microwave Absorption and Response Modeling of Nanocomposites Embedded SiC Nanoparticles[J]. Chin. Phys. Lett., 2009, 26(4): 117501
Viewed
Full text


Abstract