Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 075201    DOI: 10.1088/0256-307X/39/7/075201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Transformation Plasma Physics
Zeren Zhang and Jiping Huang*
Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
Cite this article:   
Zeren Zhang and Jiping Huang 2022 Chin. Phys. Lett. 39 075201
Download: PDF(1359KB)   PDF(mobile)(1470KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Plasma technology has widespread applications in many fields, whereas the methods for manipulating plasma transport are limited to magnetic control. In this study, we used a simplified diffusion-migration approach to describe plasma transport. The feasibility of the transformation theory for plasma transport was demonstrated. As potential applications, we designed three model devices capable of cloaking, concentrating, and rotating plasmas without disturbing the density profile of plasmas in the background. This research may help advance plasma technology in practical fields, such as medicine and chemistry.
Received: 24 April 2022      Editors' Suggestion Published: 14 June 2022
PACS:  52.65.-y (Plasma simulation)  
  52.25.Fi (Transport properties)  
  81.05.Zx (New materials: theory, design, and fabrication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/7/075201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I7/075201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zeren Zhang and Jiping Huang
[1]Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: Wiley Interscience)
[2] Li M, Wang Z, Xu R, Zhang X, Chen Z, and Wang Q 2021 Aerosp. Sci. Technol. 117 106952
[3] Liang H, Ming F, and Alshareef H N 2018 Adv. Energy Mater. 8 1801804
[4] Samal S 2017 J. Cleaner Prod. 142 3131
[5] Tamura H, Tetsuka T, Kuwahara D, and Shinohara S 2020 IEEE Trans. Plasma Sci. 48 3606
[6] Pendry J B, Schurig D, and Smith D R 2006 Science 312 1780
[7] Leonhardt U 2006 Science 312 1777
[8] Guenneau S and Puvirajesinghe T M 2013 J. R. Soc. Interface 10 20130106
[9] Fan C Z, Gao Y, and Huang J P 2008 Appl. Phys. Lett. 92 251907
[10] Chen T, Weng C N, and Chen J S 2008 Appl. Phys. Lett. 93 114103
[11] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501
[12] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 080502
[13] Huang J P 2020 ES Energy & Environ. 7 1
[14] Xu L J, Yang S, Dai G L, and Huang J P 2020 ES Energy & Environ. 7 65
[15] Hu R, Zhou S, Li Y, Lei D Y, Luo X, and Qiu C W 2018 Adv. Mater. 30 1707237
[16] Hu R, Huang S, Wang M, Luo X, Shiomi J, and Qiu C W 2019 Adv. Mater. 31 1807849
[17] Zhang J, Huang S, and Hu R 2021 Chin. Phys. Lett. 38 010502
[18]Chen F F 1974 Introduction to Plasma Physics and Controlled Fusion (Switzerland: Springer)
[19] Cui S, Wu Z, Lin H, Xiao S, Zheng B, Liu L, An X, Fu R K Y, Tian X, Tan W, and Chu P K 2019 J. Appl. Phys. 125 063302
[20] Dai G L 2021 Front. Phys. 16 53301
[21] Zhang Z, Xu L, and Huang J 2022 Adv. Theory Simul. 5 2100375
[22]Huang J P 2020 Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Singapore: Springer)
[23] Lu X and Ostrikov K 2018 Appl. Phys. Rev. 5 031102
[24] Rodríguez J A, Abdalla A I, Wang B, Lou B, Fan S, and Cappelli M A 2021 Phys. Rev. Appl. 16 014023
[25] Inami C, Kabe Y, Noyori Y, Iwai A, Bambina A, Miyagi S, and Sakai O 2021 J. Appl. Phys. 130 043301
[26] Zhou X, Xu G, and Zhang H 2021 Compos. Struct. 267 113866
[27] Restrepo-Flórez J M and Maldovan M 2016 Sci. Rep. 6 21971
[28] Hu R, Iwamoto S, Feng L, Ju S, Hu S, Ohnishi M, Nagai N, Hirakawa K, and Shiomi J 2020 Phys. Rev. X 10 021050
[29] Narayana S and Sato Y 2012 Adv. Mater. 24 71
[30] Lan C, Yang Y, Geng Z, Li B, and Zhou J 2015 Sci. Rep. 5 16416
[31] Huang C W, Chen Y C, and Nishimura Y 2015 IEEE Trans. Plasma Sci. 43 675
[32] Yu Z Z, Xiong G H, and Zhang L F 2021 Front. Phys. 16 43201
[33] Xing G, Zhao W, Hu R, and Luo X 2021 Chin. Phys. Lett. 38 124401
Related articles from Frontiers Journals
[1] Yutian Miao, G. Z. Hao, Yue Liu, H. D. He, W. Chen, Y. Q. Wang, A. K. Wang, and M. Xu. Synergistic Influences of Kinetic Effects from Thermal Particles and Fast Ions on Internal Kink Mode[J]. Chin. Phys. Lett., 2021, 38(8): 075201
[2] Xiang-Mei Liu, Yuan-Hong Song, Wei Jiang, Wen-Zhu Jia. Effect of Parallel-Plate Geometry on Mode Transition Behavior in Argon Microplasmas: Two-Dimensional Simulation[J]. Chin. Phys. Lett., 2018, 35(4): 075201
[3] QIAN Mu-Yang, YANG Cong-Ying, CHEN Xiao-Chang, NI Geng-Song, LIU-Song, WANG De-Zhen. Modeling of the Distinctive Ground-State Atomic Oxygen Density Profile in Plasma Needle Discharge at Atmospheric Pressure[J]. Chin. Phys. Lett., 2015, 32(07): 075201
[4] FU Yang-Yang, LUO Hai-Yun, ZOU Xiao-Bing, WANG Xin-Xin. Influence of Forbidden Processes on Similarity Law in Argon Glow Discharge at Low Pressure[J]. Chin. Phys. Lett., 2014, 31(07): 075201
[5] LU Wei, CHEN Shao-Yong, TANG Chang-Jian, BAI Xing-Yu, ZHANG Xin-Jun, HU You-Jun. Nonlinear Dependence of the Synergetic Current by the Combined Effect of ECCD and LHCD on the Power Ratio on HL-2A Tokamak[J]. Chin. Phys. Lett., 2013, 30(6): 075201
[6] WANG Yi-Nan, LIU Yue, LIN Guo-Qiang. A Computational Study of Radio Frequency Atmospheric Pressure Discharge in Nitrogen and Oxygen Mixture Gases[J]. Chin. Phys. Lett., 2013, 30(3): 075201
[7] HUANG Yong-Sheng, WANG Nai-Yan, TANG Xiu-Zhang, SHI Yi-Jin, ZHANG Shan. Double-Relativistic-Electron-Layer Proton Acceleration with High-Contrast Circular-Polarization Laser Pulses[J]. Chin. Phys. Lett., 2013, 30(2): 075201
[8] DUAN Wen-Xue, MA Zhi-Wei, and WU Bin. Combining Effects between LHW and IBW Injections on EAST[J]. Chin. Phys. Lett., 2012, 29(8): 075201
[9] LI Ming-Zhu, AN Zheng-Hua**, ZHOU Lei, MAO Fei-Long, WANG Heng-Liang . Strong Coupling between Propagating and Localized Surface Plasmons in Plasmonic Cavities[J]. Chin. Phys. Lett., 2011, 28(7): 075201
[10] CHEN Zhao-Quan, **, LIU Ming-Hai***, ZHOU Qi-Yan, HU Ye-Lin, YANG An, ZHU Long-Ji, HU Xi-Wei . Numerical Reproduction of Spatio-Temporal Evolution of Surface Plasmon Polaritons at Dielectric-Plasma Interface[J]. Chin. Phys. Lett., 2011, 28(4): 075201
[11] LIU Xiang-Mei, SONG Yuan-Hong, WANG You-Nian. One-Dimensional Fluid Model for Dust Particles in Dual-Frequency Capacitively Coupled Silane Discharges[J]. Chin. Phys. Lett., 2009, 26(8): 075201
[12] FENG Shuo, HE Feng, OUYANG Ji-Ting. Mechanism of Striation in Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2007, 24(8): 075201
[13] LIU Ming-Hai, HU Xi-Wei, JIANG Zhong-He, ZHANG Shu, PAN Yuan. Finite-Difference Time-Domain Analysis of Wave Propagation in a Thin Plasma Layer[J]. Chin. Phys. Lett., 2006, 23(2): 075201
[14] FANG Tong-Zhen, OUYANG Jian-Ming, WANG Long. Simulation of Chemical Processes in Repetitively Pulsed Atmospheric Plasmas[J]. Chin. Phys. Lett., 2005, 22(11): 075201
[15] WANG Yan-Hui, WANG De-Zhen. Modes of Homogeneous Barrier Discharge at Atmospheric Pressure in Helium[J]. Chin. Phys. Lett., 2004, 21(11): 075201
Viewed
Full text


Abstract