Chin. Phys. Lett.  2022, Vol. 39 Issue (6): 067101    DOI: 10.1088/0256-307X/39/6/067101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations
Lixuesong Han1†, Xianbiao Shi2,3†, Jinlong Jiao4, Zhenhai Yu1, Xia Wang1,5, Na Yu1,5, Zhiqiang Zou1,5, Jie Ma4, Weiwei Zhao2,3, Wei Xia1,6*, and Yanfeng Guo1,6*
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
2State Key Laboratory of Advanced Welding & Joining and Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China
3Shenzhen Key Laboratory of Flexible Printed Electronics Techniology, Harbin Institute of Technology, Shenzhen 518055, China
4Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
5Analytical Instrumentation Center, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
6ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
Cite this article:   
Lixuesong Han, Xianbiao Shi, Jinlong Jiao et al  2022 Chin. Phys. Lett. 39 067101
Download: PDF(3225KB)   PDF(mobile)(3328KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the nontrivial topological states in an intrinsic type-II superconductor BaSn$_{\boldsymbol{5}}$ ($T_{\rm{c}} \sim 4.4$ K) probed by measuring the magnetization, specific heat, de Haas–van Alphen (dHvA) effect, and by performing first-principles calculations. The first-principles calculations reveal a topological nodal ring structure centered at the $H$ point in the $k_{\rm{z}} = \pi$ plane of the Brillouin zone, which could be gapped by spin-orbit coupling (SOC), yielding relatively small gaps below and above the Fermi level of about 0.04 eV and 0.14 eV, respectively. The SOC also results in a pair of Dirac points along the $\varGamma$–$A$ direction, located at $\sim $0.2 eV above the Fermi level. The analysis of the dHvA quantum oscillations supports the calculations by revealing a nontrivial Berry phase originating from the hole and electron pockets related to the bands forming the Dirac cones. Thus, our study provides an excellent avenue for investigating the interplay between superconductivity and nontrivial topological states.
Received: 23 February 2022      Published: 29 May 2022
PACS:  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  74.70.Ad (Metals; alloys and binary compounds)  
  72.20.My (Galvanomagnetic and other magnetotransport effects)  
  74.25.-q (Properties of superconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/6/067101       OR      https://cpl.iphy.ac.cn/Y2022/V39/I6/067101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lixuesong Han
Xianbiao Shi
Jinlong Jiao
Zhenhai Yu
Xia Wang
Na Yu
Zhiqiang Zou
Jie Ma
Weiwei Zhao
Wei Xia
and Yanfeng Guo
[1] Wilczek F 2009 Nat. Phys. 5 614
[2] Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501
[3] Stern A 2010 Nature 464 187
[4] Nayak C, Simon S H, Stern A, Freedman M, and Das S S 2008 Rev. Mod. Phys. 80 1083
[5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[6] Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003
[7] Kopnin N B and Salomaa M M 1991 Phys. Rev. B 44 9667
[8] Read N and Green D 2000 Phys. Rev. B 61 10267
[9] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[10] Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657
[11] Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, and Xue Q K 2012 Science 336 52
[12] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, and Jia J F 2015 Phys. Rev. Lett. 114 017001
[13] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, and Jia J F 2016 Phys. Rev. Lett. 116 257003
[14] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, and Shin S 2018 Science 360 182
[15] Wang Z, Zhang P, Xu G, Zeng L K, Miao H, Xu X, Qian T, Weng H, Richard P, Fedorov A V, Ding H, Dai X, and Fang Z 2015 Phys. Rev. B 92 115119
[16] Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J, and Ding H 2019 Nat. Phys. 15 1181
[17] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, and Gao H J 2018 Science 362 333
[18] Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z X, Zhang T, and Feng D L 2019 Chin. Phys. Lett. 36 057403
[19] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, and Feng D L 2018 Phys. Rev. X 8 041056
[20] Liu W, Cao L, Zhu S, Kong L, Wang G, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F, Kondo T, Du S, Cao G H, Shin S, Fu L, Yin Z, Gao H J, and Ding H 2020 Nat. Commun. 11 5688
[21] Kong L, Cao L, Zhu S, Papaj M, Dai G, Li G, Fan P, Liu W, Yang F, Wang X, Du S, Jin C, Fu L, Gao H J, and Ding H 2021 Nat. Commun. 12 4146
[22] Xia W, Shi X B, Zhang Y, Su H, Wang Q, Ding L C, Chen L M, Wang X, Zou Z Q, Yu N, Pi L, Hao Y F, Li B, Zhu Z W, Zhao W W, Kou X F, and Guo Y F 2020 Phys. Rev. B 101 155117
[23] Chen C, Liang A J, Liu S, Nie S M, Huang J W, Wang M X, Li Y W, Pei D, Yang H F, Zheng H J, Zhang Y, Lu D H, Hashimoto M, Barinov A, Jozwiak C, Bostwick A, Rotenberg E, Kou X F, Yang L X, Guo Y F, Wang Z J, Yuan H T, Liu Z K, and Chen Y L 2020 Matter 3 2055
[24] Zhang G N, Shi X B, Liu X L, Xia W, Su H, Chen L M, Wang X, Yu N, Zou Z Q, Zhao W W, and Guo Y F 2020 Chin. Phys. Lett. 37 087101
[25] Huang Z, Shi X B, Zhang G N, Liu Z T, Soohyun C, Jiang Z C, Liu Z H, Liu J S, Yang Y C, Xia W, Zhao W W, Guo Y F, and Shen D W 2021 Chin. Phys. Lett. 38 107403
[26] Huang K, Luo A Y, Chen C, Zhang G N, Liu X L, Li Y W, Wu F, Cui S T, Sun Z, Jozwiak C, Bostwick A, Rotenberg E, Yang H F, Yang L X, Xu G, Guo Y F, Liu Z K, and Chen Y L 2021 Phys. Rev. B 103 155148
[27] Xu L X, Xia Y Y Y, Liu S, Li Y W, Wei L Y, Wang H Y, Wang C W, Yang H F, Liang A J, Huang K, Deng T, Xia W, Zhang X, Zheng H J, Chen Y J, Yang L X, Wang M X, Guo Y F, Li G, Liu Z K, and Chen Y L 2021 Phys. Rev. B 103 L201109
[28] Yang H F, Liu X L, Nie S M, Shi W J, Huang K, Zheng H J, Zhang J, Li Y W, Liang A J, Wang M X, Yang L X, Guo Y F, L, Z K, and Chen Y L 2021 Phys. Rev. B 104 L220501
[29] Yuan Y, Pan J, Wang X, Fang Y, Song C, Wang L, He K, Ma X, Zhang H, Huang F, Li W, and Xue Q K 2019 Nat. Phys. 15 1046
[30] Fässler T F, Hoffmann S, and Kronseder C 2001 Z. Anorg. Allg. Chem. 627 2486
[31] Lin X, Bud'ko S L, and Canfield P C 2012 Philos. Mag. 92 3006
[32] Billington D, Ernsting D, Millichamp T E, and Dugdale S B 2015 Philos. Mag. 95 1728
[33] Siddiquee K A M H, Munir R, Dissanayake C, Hu X Z, Yadav S, Takano Y, Choi E S, Le D, Rahman T S, and Nakajima Y 2021 arXiv:2103.08039v1 [cond-mat.supr-con]
[34] Siddiquee K A M H, Munir R, Dissanayake C et al. 2019 arXiv:1901.02087v1 [cond-mat.supr-con]
[35] Luo X, Shao D F, Pei Q L, Song J Y, Hu L, Han Y Y, Zhu X B, Song W H, Lu W J, and Sun Y P 2015 J. Mater. Chem. C 3 11432
[36] Blöchl P E 1994 Phys. Rev. B 50 17953
[37] Lehtomäki J, Makkonen I, Caro M A, Harju A, and Lopez-Acevedo O J 2014 Chem. Phys. 141 234102
[38] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[40] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[41] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[42] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[43] Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147
[44] Hu J, Tang Z, Liu J, Liu X, Zhu Y, Graf D, Myhro K, Tran S, Lau C N, Wei J, and Mao Z 2016 Phys. Rev. Lett. 117 016602
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 067101
[2] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 067101
[3] Pan Nie, Huakun Zuo, Lingxiao Zhao, and Zengwei Zhu. Anisotropic Fermi Surfaces, Electrical Transport, and Two-Dimensional Fermi Liquid Behavior in Layered Ternary Boride MoAlB[J]. Chin. Phys. Lett., 2022, 39(5): 067101
[4] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 067101
[5] Xu Chen, Xinhui Zhan, Xiaojun Wang, Jun Deng, Xiao-Bing Liu, Xin Chen, Jian-Gang Guo, and Xiaolong Chen. Highly Robust Reentrant Superconductivity in CsV$_{3}$Sb$_{5}$ under Pressure[J]. Chin. Phys. Lett., 2021, 38(5): 067101
[6] Gaoning Zhang, Xianbiao Shi, Xiaolei Liu, Wei Xia, Hao Su, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, Weiwei Zhao, and Yanfeng Guo. de Haas–van Alphen Quantum Oscillations in BaSn$_{3}$ Superconductor with Multiple Dirac Fermions[J]. Chin. Phys. Lett., 2020, 37(8): 067101
[7] Yequan Chen, Yongda Chen, Jiai Ning, Liming Chen, Wenzhuo Zhuang, Liang He, Rong Zhang, Yongbing Xu, Xuefeng Wang. Observation of Shubnikov-de Haas Oscillations in Large-Scale Weyl Semimetal WTe$_{2}$ Films[J]. Chin. Phys. Lett., 2020, 37(1): 067101
[8] Xiang-Wei Huang, Xiao-Xiong Liu, Peng Yu, Pei-Ling Li, Jian Cui, Jian Yi, Jian-Bo Deng, Jie Fan, Zhong-Qing Ji, Fan-Ming Qu, Xiu-Nian Jing, Chang-Li Yang, Li Lu, Zheng Liu, Guang-Tong Liu. Magneto-Transport and Shubnikov–de Haas Oscillations in the Type-II Weyl Semimetal Candidate NbIrTe$_{4}$ Flake[J]. Chin. Phys. Lett., 2019, 36(7): 067101
[9] D. S. Wu, Z. Y. Mi, Y. J. Li, W. Wu, P. L. Li, Y. T. Song, G. T. Liu, G. Li, J. L. Luo. Single Crystal Growth and Magnetoresistivity of Topological Semimetal CoSi[J]. Chin. Phys. Lett., 2019, 36(7): 067101
[10] Ping Ai, Qiang Gao, Jing Liu, Yuxiao Zhang, Cong Li, Jianwei Huang, Chunyao Song, Hongtao Yan, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Xing-Jiang Zhou. Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor[J]. Chin. Phys. Lett., 2019, 36(6): 067101
[11] Xi Zhang, Tianchuang Luo, Xiyao Hu, Jing Guo, Gongchang Lin, Yuehui Li, Yanzhao Liu, Xiaokang Li, Jun Ge, Ying Xing, Zengwei Zhu, Peng Gao, Liling Sun, Jian Wang. Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe$_{2}$[J]. Chin. Phys. Lett., 2019, 36(5): 067101
[12] Ying Ding, Lin Zhao, Hong-Tao Yan, Qiang Gao, Jing Liu, Cheng Hu, Jian-Wei Huang, Cong Li, Yu Xu, Yong-Qing Cai, Hong-Tao Rong, Ding-Song Wu, Chun-Yao Song, Hua-Xue Zhou, Xiao-Li Dong, Guo-Dong Liu, Qing-Yan Wang, Shen-Jin Zhang, Zhi-Min Wang, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Chuang-Tian Chen, X. J. Zhou. Disappearance of Superconductivity and a Concomitant Lifshitz Transition in Heavily Overdoped Bi$_2$Sr$_2$CuO$_{6}$ Superconductor Revealed by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(1): 067101
[13] Cheng Hu, Jian-Fa Zhao, Ying Ding, Jing Liu, Qiang Gao, Lin Zhao, Guo-Dong Liu, Li Yu, Chang-Qing Jin, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Evidence for Multiple Underlying Fermi Surface and Isotropic Energy Gap in the Cuprate Parent Compound Ca$_2$CuO$_2$Cl$_2$[J]. Chin. Phys. Lett., 2018, 35(6): 067101
[14] Jun Ma, Bin-Bin Fu, Jun-Zhang Ma, Ling-Yuan Kong, Di Chen, Ji-Feng Shao, Chang-Jin Zhang, Tian Qian, Yu-Heng Zhang, Hong Ding. Experimental Investigation of Electronic Structure of La(O,F)BiSe$_{2}$[J]. Chin. Phys. Lett., 2016, 33(12): 067101
[15] SHI Ying-Bo, HUANG Yao-Bo, WANG Xiao-Ping, SHI Xun, ROEKEGHEM A-Van, ZHANG Wei-Lu, XU Na, RICHARD Pierre, QIAN Tian, RIENKS Emile, THIRUPATHAIAH S, ZHAO Kan, JIN Chang-Qing, SHI Ming, DING Hong. Observation of Strong-Coupling Pairing with Weakened Fermi-Surface Nesting at Optimal Hole Doping in Ca0.33Na0.67Fe2As2[J]. Chin. Phys. Lett., 2014, 31(06): 067101
Viewed
Full text


Abstract