Chin. Phys. Lett.  2022, Vol. 39 Issue (5): 050303    DOI: 10.1088/0256-307X/39/5/050303
GENERAL |
Quantum Continual Learning Overcoming Catastrophic Forgetting
Wenjie Jiang1, Zhide Lu1, and Dong-Ling Deng1,2*
1Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, China
2Shanghai Qi Zhi Institute, Shanghai 200232, China
Cite this article:   
Wenjie Jiang, Zhide Lu, and Dong-Ling Deng 2022 Chin. Phys. Lett. 39 050303
Download: PDF(1129KB)   PDF(mobile)(1278KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Catastrophic forgetting describes the fact that machine learning models will likely forget the knowledge of previously learned tasks after the learning process of a new one. It is a vital problem in the continual learning scenario and recently has attracted tremendous concern across different communities. We explore the catastrophic forgetting phenomena in the context of quantum machine learning. It is found that, similar to those classical learning models based on neural networks, quantum learning systems likewise suffer from such forgetting problem in classification tasks emerging from various application scenes. We show that based on the local geometrical information in the loss function landscape of the trained model, a uniform strategy can be adapted to overcome the forgetting problem in the incremental learning setting. Our results uncover the catastrophic forgetting phenomena in quantum machine learning and offer a practical method to overcome this problem, which opens a new avenue for exploring potential quantum advantages towards continual learning.
Received: 17 March 2022      Editors' Suggestion Published: 29 April 2022
PACS:  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/5/050303       OR      https://cpl.iphy.ac.cn/Y2022/V39/I5/050303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wenjie Jiang
Zhide Lu
and Dong-Ling Deng
[1] Murray M M, Lewkowicz D J, Amedi A, and Wallace M T 2016 Trends Neurosci. 39 567
[2] Zenke F, Gerstner W, and Ganguli S 2017 Curr. Opin. Neurobiol. 43 166
[3] Legg S and Hutter M 2007 Minds & Machines 17 391
[4] Legg S and Veness J 2011 arXiv:1109.5951 [cs.AI]
[5] Hernández-Orallo J and Dowe D L 2010 Artif. Intell. 174 1508
[6] Parisi G I, Kemker R, Part J L, Kanan C, and Wermter S 2019 Neural Networks 113 54
[7] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, and Riedmiller M 2013 arXiv:1312.5602 [cs.LG]
[8] Mnih V, Kavukcuoglu K, Silver D et al. 2015 Nature 518 529
[9] Silver D, Huang A, Maddison C J et al. 2016 Nature 529 484
[10] Silver D, Schrittwieser J, Simonyan K et al. 2017 Nature 550 354
[11] Krizhevsky A, Sutskever I, and Hinton G E 2017 Commun. ACM 60 84
[12] Silver D, Hubert T, Schrittwieser J et al. 2018 Science 362 1140
[13] McCloskey M and Cohen N J 1989 Psychology of Learning and Motivation (San Diego: Academic Press) vol 24 p 109
[14] Robins A 1995 Connect. Sci. 7 123
[15] French R M 1999 Trends Cognit. Sci. 3 128
[16] Goodfellow I J, Mirza M, Xiao D, Courville A, and Bengio Y 2013 arXiv:1312.6211 [stat.ML]
[17] Kemker R, McClure M, Abitino A, Hayes T, and Kanan C 2017 arXiv:1708.02072 [cs.AI]
[18] Lloyd S, Mohseni M, and Rebentrost P 2013 arXiv: 1307.0411 [quant-ph]
[19] Lloyd S and Weedbrook C 2018 Phys. Rev. Lett. 121 040502
[20] Amin M H, Andriyash E, Rolfe J, Kulchytskyy B, and Melko R 2018 Phys. Rev. X 8 021050
[21] Cong I, Choi S, and Lukin M D 2019 Nat. Phys. 15 1273
[22] Lamata L 2017 Sci. Rep. 7 1609
[23] Du Y, Hsieh M H, Liu T, and Tao D 2018 arXiv:1809.06056 [quant-ph]
[24] Hu L, Wu S H, Cai W et al. 2019 Sci. Adv. 5 eaav2761
[25] Saggio V, Asenbeck B E, Hamann A et al. 2021 Nature 591 229
[26] Cong I and Duan L 2016 New J. Phys. 18 073011
[27] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, and Lloyd S 2017 Nature 549 195
[28] Gao X, Zhang Z Y, and Duan L M 2018 Sci. Adv. 4 eaat9004
[29] Sarma S D, Deng D L, and Duan L M 2019 Phys. Today 72 48
[30] Aaronson S 2015 Nat. Phys. 11 291
[31] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, and Zdeborová L 2019 Rev. Mod. Phys. 91 045002
[32] Liu Y, Arunachalam S, and Temme K 2021 Nat. Phys. 17 1013
[33] Alexeev Y, Bacon D, Brown K R et al. 2021 PRX Quantum 2 017001
[34] Awschalom D, Berggren K K, Bernien H et al. 2021 PRX Quantum 2 017002
[35] Altman E, Brown K R, Carleo G et al. 2021 PRX Quantum 2 017003
[36] Du Y, Hsieh M H, Liu T, You S, and Tao D 2021 PRX Quantum 2 040337
[37] Sweke R, Wilde F, Meyer J, Schuld M, Faehrmann P K, Meynard-Piganeau B, and Eisert J 2020 Quantum 4 314
[38]You X and Wu X 2021 Proceedings of the 38th International Conference on Machine Learning (PMLR) vol 139 pp 12144–12155
[39] Dunjko V and Briegel H J 2018 Rep. Prog. Phys. 81 074001
[40] Lu S, Duan L M, and Deng D L 2020 Phys. Rev. Res. 2 033212
[41] Liu N and Wittek P 2020 Phys. Rev. A 101 062331
[42] Gong W and Deng D L 2021 arXiv:2102.07788 [quant-ph]
[43] Schuld M and Killoran N 2019 Phys. Rev. Lett. 122 040504
[44] Grant E, Benedetti M, Cao S, Hallam A, Lockhart J, Stojevic V, Green A G, and Severini S 2018 npj Quantum Inf. 4 65
[45] Blank C, Park D K, Rhee J K K, and Petruccione F 2020 npj Quantum Inf. 6 41
[46] Du Y X, Hsieh M H, Liu T L, Tao D C, and Liu N N 2021 Phys. Rev. Res. 3 023153
[47]Russell S and Norvig P 2020 Artificial Intelligence: A Modern Approach (Pearson)
[48]LeCun Y, Cortes C, and Burges C 1998 MNIST Handwritten Digit Database
[49] Chang C Z, Zhang J, Feng X et al. 2013 Science 340 167
[50] Yang G, Pan F, and Gan W B 2009 Nature 462 920
[51] Kirkpatrick J, Pascanu R, Rabinowitz N et al. 2016 arXiv:1612.00796 [cs.LG]
[52] Bottou L 2004 Advanced Lectures on Machine Learning: ML Summer Schools, Canberra, Australia, 2–14 February 2003, Revised Lectures, Tübingen, Germany, 4–16 August 2003 (Berlin: Springer) p 146
[53] Kingma D P and Ba J 2014 arXiv:1412.6980 [cs.LG]
[54]Goodfellow I, Bengio Y, and Courville A 2016 Deep Learning (Cambridge: MIT Press)
[55]Garipov T, Izmailov P, Podoprikhin D, Vetrov D P, and Wilson A G 2018 Advances in Neural Information Processing Systems (Curran Associates, Inc.)
[56] Scott W A 2002 J. Stat. Comput. Simul. 72 599
[57] Ly A, Marsman M, Verhagen J, Grasman R, and Wagenmakers E J 2017 arXiv:1705.01064 [math.ST]
[58] Kunstner F, Balles L, and Hennig P 2019 arXiv:1905.12558 [cs.LG]
[59]Frieden B R 1998 Physics from Fisher Information: A Unification (Cambridge: Cambridge University Press)
[60] Petz D and Ghinea C 2011 Quantum Probab. Relat. Top. 27 261
[61] Liu J, Yuan H, Lu X M, and Wang X 2019 J. Phys. A 53 023001
[62] Huang K, Wang Z A, Song C et al. 2021 npj Quantum Inf. 7 165
[63] Smacchia P, Amico L, Facchi P, Fazio R, Florio G, Pascazio S, and Vedral V 2011 Phys. Rev. A 84 022304
[64] Rao D, Visin F, Rusu A A, Teh Y W, Pascanu R, and Hadsell R 2019 arXiv:1910.14481 [cs.LG]
[65] Du Y, Hsieh M H, Liu T, and Tao D 2020 Phys. Rev. Res. 2 033125
[66] Huang H Y, Kueng R, and Preskill J 2021 Phys. Rev. Lett. 126 190505
[67] Huang H Y, Kueng R, Torlai G, Albert V V, and Preskill J 2021 arXiv:2106.12627 [quant-ph]
[68] Sharma K, Cerezo M, Holmes Z, Cincio L, Sornborger A, and Coles P J 2022 Phys. Rev. Lett. 128 070501
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 050303
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 050303
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 050303
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 050303
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 050303
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 050303
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 050303
[8] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 050303
[9] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 050303
[10] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 050303
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 050303
[12] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 050303
[13] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 050303
[14] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 050303
[15] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 050303
Viewed
Full text


Abstract