Chin. Phys. Lett.  2022, Vol. 39 Issue (2): 028201    DOI: 10.1088/0256-307X/39/2/028201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Wet Mechanical Milling Induced Phase Transition to Cubic Anti-Perovskite Li$_{2}$OHCl
Di-Xing Ni1†, Yao-Dong Liu1†, Zhi Deng1, Dian-Cheng Chen1, Xin-Xin Zhang2, Tao Wang3, Shuai Li1*, and Yu-Sheng Zhao1
1Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
221C Innovation Laboratory, Contemporary Amperex Technology Ltd. (CATL), Ningde 352100, China
3Guangdong–Hong Kong–Macao Joint Laboratory for Neutron Scattering Science and Technology, Dongguan 523803, China
Cite this article:   
Di-Xing Ni, Yao-Dong Liu, Zhi Deng et al  2022 Chin. Phys. Lett. 39 028201
Download: PDF(990KB)   PDF(mobile)(1084KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Anti-perovskite solid-state electrolyte Li$_{2}$OHCl usually exhibits orthorhombic phase and low ionic conductivity at room temperature. However, its ionic conductivity increases greatly when the temperature is up to 40 ℃, while it goes through an orthorhombic-to-cubic phase transition. The cubic Li$_{2}$OHCl with high ionic conductivity is stabilized at room temperature and even lower temperature about 10 ℃ by a simple synthesis method of wet mechanical milling. The cubic Li$_{2}$OHCl prepared by this method performs an ionic conductivity of $4.27 \times 10^{-6}$ S/cm at room temperature, about one order of magnitude higher than that of the orthorhombic Li$_{2}$OHCl. The phase-transition temperature is decreased to around 10 ℃. Moreover, it can still remain cubic phase after heat treatment at 210 ℃. This work delivers a huge potential of fabricating high ionic conductivity phase anti-perovskite solid-state electrolyte materials by wet mechanical milling.
Received: 29 October 2021      Published: 29 January 2022
PACS:  81.20.Wk (Machining, milling)  
  82.47.Aa (Lithium-ion batteries)  
  82.45.Aa (Electrochemical synthesis)  
  82.20.Db (Transition state theory and statistical theories of rate constants)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/2/028201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I2/028201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Di-Xing Ni
Yao-Dong Liu
Zhi Deng
Dian-Cheng Chen
Xin-Xin Zhang
Tao Wang
Shuai Li
and Yu-Sheng Zhao
[1] Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, and Nan C W 2019 Adv. Mater. 31 1806082
[2] Sun C, Liu J, Gong Y, Wilkinson D P, and Zhang J 2017 Nano Energy 33 363
[3] Kim S, Oguchi H, Toyama N et al. 2019 Nat. Commun. 10 1081
[4] Kim K M, Shin D O, and Lee Y G 2015 Electrochim. Acta 176 1364
[5] Ohta H, Mizoguchi T, Aoki N, Yamamoto T, Sabarudin A, and Umemura T 2013 Appl. Phys. Lett. 102 089902
[6] Han F, Zhu Y, He X, Mo Y, and Wang C 2016 Adv. Energy Mater. 6 1501590
[7] Hood Z D, Wang H, Samuthira P A, Keum J K, and Liang C 2016 J. Am. Chem. Soc. 138 1768
[8] Li Y, Zhou W, Xin S, Li S, Zhu J, Lu X, Cui Z, Jia Q, Zhou J, Zhao Y, and Goodenough J B 2016 Angew. Chem. Int. Ed. Engl. 55 9965
[9] Deng Z, Ou M, Wan J et al. 2020 Chem. Mater. 32 8827
[10] Koedtruad A, Patino M A, Ichikawa N, Kan D, and Shimakawa Y 2020 J. Solid State Chem. 286 121263
[11] Howard J, Hood Z D, and Holzwarth N A W 2017 Phys. Rev. Mater. 1 75406
[12] Song A Y, Xiao Y, Turcheniuk K, Upadhya P, Ramanujapuram A, Benson J, Magasinski A, Olguin M, Meda L, Borodin O, and Yushin G 2018 Adv. Energy Mater. 8 1700971
[13] Song A Y, Turcheniuk K, Leisen J, Xiao Y, Meda L, Borodin O, and Yushin G 2020 Adv. Energy Mater. 10 1903480
[14] Georg S M J 2003 ChemPhysChem 4 343
[15] Yamamoto T, Shiba H, Mitsukuchi N, Sugumar M K, Motoyama M, and Iriyama Y 2020 Inorg. Chem. 59 11901
[16] Gaffet E, Louison C, Harmelin M, and Faudot F 1991 Mater. Sci. Eng. A 34 1380
[17] El-Eskandarany M S, Banyan M, and Al-Ajmi F 2018 RSC Adv. 8 32003
[18] Hara K O, Yamasue E, Okumura H, and Ishihara K N 2009 J. Phys.: Conf. Ser. 144 012021
Related articles from Frontiers Journals
[1] LI Yi-Gui**, SUN Jian, YANG Chun-Sheng, LIU Jing-Quan, SUGIYAMA Susumu, TANAKA Katsuhiko . Fabrication and Characterization of a Lead Zirconate Titanate Micro Energy Harvester Based on Eutectic Bonding[J]. Chin. Phys. Lett., 2011, 28(6): 028201
Viewed
Full text


Abstract