Chin. Phys. Lett.  2021, Vol. 38 Issue (11): 118401    DOI: 10.1088/0256-307X/38/11/118401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Recent Progress in Presodiation Technique for High-Performance Na-Ion Batteries
Fei Xie , Yaxiang Lu*, Liquan Chen , and Yong-Sheng Hu*
Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Fei Xie , Yaxiang Lu, Liquan Chen  et al  2021 Chin. Phys. Lett. 38 118401
Download: PDF(1142KB)   PDF(mobile)(1281KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Na-ion batteries (NIBs) have been attracting growing interests in recent years with the increasing demand of energy storage owing to their dependence on more abundant Na than Li. The exploration of the industrialization of NIBs is also on the march, where some challenges are still limiting its step. For instance, the relatively low initial Coulombic efficiency (ICE) of anode can cause undesired energy density loss in the full cell. In addition to the strategies from the sight of materials design that to improve the capacity and ICE of electrodes, presodiation technique is another important method to efficiently offset the irreversible capacity and enhance the energy density. Meanwhile, the slow release of the extra Na during the cycling is able to improve the cycling stability. In this review, we would like to provide a general insight of presodiation technique for high-performance NIBs. The recent research progress including the principles and strategies of presodiation will be introduced, and some remaining challenges as well as our perspectives will be discussed. This review aims to exhibit the basic knowledge of presodiation to inspire the researchers for future studies.
Received: 17 August 2021      Editors' Suggestion Published: 27 October 2021
PACS:  82.47.Uv (Electrochemical capacitors; supercapacitors)  
  84.60.Ve (Energy storage systems, including capacitor banks)  
  88.80.F- (Energy storage technologies)  
Fund: Supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51725206 and 52072403), the NSFC-UK-RI_EPSRC (Grant No. 51861165201), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21070500), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020006), the Beijing Municipal Natural Science Foundation (Grant No. 2212022), the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2020006), and China Postdoctoral Science Foundation founded Project (Grant No. 2021M693367).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/11/118401       OR      https://cpl.iphy.ac.cn/Y2021/V38/I11/118401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fei Xie 
Yaxiang Lu
Liquan Chen 
and Yong-Sheng Hu
[1] Li Y, Lu Y, Zhao C, Hu Y S, Titirici M M, Li H, Huang X, and Chen L 2017 Energy Storage Mater. 7 130
[2] Mu L, Xu S, Li Y, Hu Y S, Li H, Chen L, and Huang X 2015 Adv. Mater. 27 6928
[3] Usiskin R, Lu Y, Popovic J, Law M, Balaya P, Hu Y S, and Maier J 2021 Nat. Rev. Mater.
[4] Pan H, Hu Y S, and Chen L 2013 Energy & Environ. Sci. 6 2338
[5] Song J, Xiao B, Lin Y, Xu K, and Li X 2018 Adv. Energy Mater. 8 1703082
[6] Xie F, Xu Z, Guo Z, and Titirici M 2020 Prog. Energy 2 042002
[7] Wang F, Wang B, Li J, Wang B, Zhou Y, Wang D, Liu H, and Dou S 2021 ACS Nano 15 2197
[8] Zhan R M, Wang X C, Chen Z H, Seh Z W, Wang L, and Sun Y M 2021 Adv. Energy Mater. 11 2101565
[9] Zhang X, Fan C, and Han S 2017 J. Mater. Sci. 52 10418
[10] Xu Z, Xie F, Wang J, Au H, Tebyetekerwa M, Guo Z, Yang S, Hu Y S, and Titirici M M 2019 Adv. Funct. Mater. 29 1903895
[11] Moeez I, Jung H G, Lim H D, and Chung K Y 2019 ACS Appl. Mater. & Interfaces 11 41394
[12] Liu X, Tan Y, Liu T, Wang W, Li C, Lu J, and Sun Y 2019 Adv. Funct. Mater. 29 1903795
[13] Liu M, Zhang J, Guo S, Wang B, Shen Y, Ai X, Yang H, and Qian J 2020 ACS Appl. Mater. & Interfaces 12 17620
[14] Jo J H, Choi J U, Park Y J, Ko J, Yashiro H, and Myung S T 2020 Energy Storage Mater. 32 281
[15] Zou K, Cai P, Tian Y, Li J, Liu C, Zou G, and Hou H 2020 Small Methods 4 1900763
[16] Niu Y B, Guo Y J, Yin Y Y, Zhang S Y, Wang T, Wang P, Xin S, and Guo Y 2020 Adv. Mater. 32 2001419
[17] Ding F, Meng Q, Yu P, Wang H, Niu Y, Li Y, Yang Y, Rong X, Liu X, Lu Y, Chen L, and Hu Y S 2021 Adv. Funct. Mater. 31 2101475
[18] Holtstiege F, Bärmann P, Nölle R, Winter M, and Placke T 2018 Batteries 4 4
[19] He H, Sun D, Tang Y, Wang H, and Shao M 2019 Energy Storage Mater. 23 233
[20] Zhang M, Li Y, Wu F, Bai Y, and Wu C 2021 Nano Energy 82 105738
[21] Lotfabad E M, Kalisvaart P, Kohandehghan A, Karpuzov D, and Mitlin D 2014 J. Mater. Chem. A 2 19685
[22] Xiao L, Lu H, Fang Y, Sushko M L, Cao Y, Ai X, Yang H, and Liu J 2018 Adv. Energy Mater. 8 1703238
[23] Xie F, Xu Z, Jensen A, Ding F, Au H, Feng J, Luo H, Qiao M, Guo Z, Lu Y, Drew A, Hu Y S, and Titirici M 2019 J. Mater. Chem. A 7 27567
[24] Li Z, Bommier C, Chong Z S, Jian Z, Surta T W, Wang X, Xing Z, Neuefeind J C, Stickle W F, Dolgos M, Greaney P A, and Ji X 2017 Adv. Energy Mater. 7 1602894
[25] Xie F, Xu Z, Guo Z, Lu Y, Chen L, Titirici M M, and Hu Y S 2021 Sci. Chin. Chem. 64 1679
[26] Xie F, Xu Z, Jensen A C S, Au H, Lu Y, Araullo-Peters V, Drew A J, Hu Y S, and Titirici M M 2019 Adv. Funct. Mater. 29 1901072
[27] Luo W, Bommier C, Jian Z, Li X, Carter R, Vail S, Lu Y, Lee J J, and Ji X 2015 ACS Appl. Mater. & Interfaces 7 2626
[28] Li Q, Zhu Y, Zhao P, Yuan C, Chen M, and Wang C 2018 Carbon 129 85
[29] Lu H, Chen X, Jia Y, Chen H, Wang Y, Ai X, Yang H, and Cao Y 2019 Nano Energy 64 103903
[30] Qi Y, Lu Y, Ding F, Zhang Q, Li H, Huang X, Chen L, and Hu Y 2019 Angew. Chem. 131 4405
[31] Zhou C, Li A, Cao B, Chen X, Jia M, and Song H 2018 Electrochem. Soc. Interface 165 A1447
[32] Chen C, Huang Y, Zhu Y, Zhang Z, Guang Z, Meng Z, and Liu P 2020 ACS Sustain. Chem. Eng. 8 1497
[33] Yamamoto H, Muratsubaki S, Kubota K, Fukunishi M, Watanabe H, Kim J, and Komaba S 2018 J. Mater. Chem. A 6 16844
[34] Zhao X, Ding Y, Xu Q, Yu X, Liu Y, and Shen H 2019 Adv. Energy Mater. 9 1803648
[35] De Llave E, Borgel V, Park K, Hwang J, Sun Y, Hartmann P, Chesneau F F, and Aurbach D 2016 ACS Appl. Mater. & Interfaces 8 1867
[36] Dewar D and Glushenkov A M 2021 Energy & Environ. Sci. 14 1380
[37] Liu W, Chen X, Zhang C, Xu H, Sun X, Zheng Y, Yu Y, Li S, Huang Y, and Li J 2019 ACS Appl. Mater. & Interfaces 11 23207
[38] Xiao B, Soto F A, Gu M, Han K S, Song J, Wang H, Engelhard M H, Murugesan V, Mueller K T, Reed D, Sprenkle V L, Balbuena P B, and Li X 2018 Adv. Energy Mater. 8 1801441
[39] Forney M W, Ganter M J, Staub J W, Ridgley R D, and Landi B J 2013 Nano Lett. 13 4158
[40] Pan Q, Zuo P, Mu T, Du C, Cheng X, Ma Y, Gao Y, and Yin G 2017 J. Power Sources 347 170
[41] Tang J, Kye D K, and Pol V G 2018 J. Power Sources 396 476
[42] Wang G, Li F, Liu D, Zheng D, Luo Y, Qu D, Ding T, and Qu D 2019 ACS Appl. Mater. & Interfaces 11 8699
[43] Zhang X, Qu H, Ji W, Zheng D, Ding T, Abegglen C, Qiu D, and Qu D 2020 ACS Appl. Mater. & Interfaces 12 11589
[44] Wang G, Li F, Liu D, Zheng D, Abeggien C J, Luo Y, Yang X Q, Ding T, and Qu D 2020 Energy Storage Mater. 24 147
[45] Shen Y, Qian J, Yang H, Zhong F, and Ai X 2020 Small 16 1907602
[46] Pan X, Chojnacka A, and Béguin F 2021 Energy Storage Mater. 40 22
[47] Shanmukaraj D, Kretschmer K, Sahu T, Bao W, Rojo T, Wang G, and Wang M 2018 ChemSusChem 11 3286
[48] Zhou X, Lai Y, Wu X, Chen Z, Faping Z, Xinping A, Hanxi Y, and Yuliang C 2021 Chem. Res. Chin. Univ. 37 274
[49] Zou K, Deng W, Cai P, Deng X, Wang B, Liu C, Li J, Hou H, Zou G, and Ji X 2020 Adv. Funct. Mater. 31 2005581
Viewed
Full text


Abstract