Chin. Phys. Lett.  2021, Vol. 38 Issue (8): 085201    DOI: 10.1088/0256-307X/38/8/085201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Excitation of RSAEs during Sawteeth-Like Oscillation in EAST
Ming Xu1, Guoqiang Zhong1*, Baolong Hao2, Wei Shen1, Liqun Hu1, Wei Chen3, Zhiyong Qiu4, Xuexi Zhang1, Youjun Hu1, Yingying Li1,5,6, Hailin Zhao1, Haiqing Liu1, Bo Lyu1, and the EAST Team1
1Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei 230031, China
2Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, China
3Southwestern Institute of Physics, Chengdu 610041, China
4Department of Physics, Zhejiang University, Hangzhou 310027, China
5Enn Science and Technology Development Co., Ltd, Langfang 065001, China
6Hebei Key Laboratory of Compact Fusion, Langfang 065001, China
Cite this article:   
Ming Xu, Guoqiang Zhong, Baolong Hao et al  2021 Chin. Phys. Lett. 38 085201
Download: PDF(971KB)   PDF(mobile)(1065KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The excitation condition of reversed shear Alfvén eigenmodes (RSAEs) has been investigated during sawtooth-like oscillation in the EAST tokamak. The sawtooth-like phenomena can be reproduced in the configuration of reversed magnetic shear, and the threshold gradient of electron temperature is formed accordingly, together with the increasing of the confinement of thermal particles. The distribution function of energetic ions density is altered dramatically when the neutral beam is switched from NBI1L (tangent) to NBI1R (perpendicular), which can be captured by the measurement of radial neutron camera. The RSAEs are excited easily in the vicinity of $q_{\min}$ (1.99 m $\leq R \leq 2.06$ m) for the injection of neutral beam with perpendicular direction, which should be excited by the steep gradient of energetic ions density. Furthermore, the excitation of RSAEs and the formation of threshold gradient of electron temperature can take place concurrently, which means that the neutral beam with perpendicular injection is beneficial for the establishment of internal transport barrier.
Received: 09 March 2021      Editors' Suggestion Published: 02 August 2021
PACS:  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  52.25.Fi (Transport properties)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
Fund: Supported by the National MCF Energy R&D Program of China (Grant Nos. 2019YFE03020000 and 2018YFE0304100), and the National Nature Science Foundation of China (Grant Nos. 11975267 and 11975273).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/8/085201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I8/085201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming Xu
Guoqiang Zhong
Baolong Hao
Wei Shen
Liqun Hu
Wei Chen
Zhiyong Qiu
Xuexi Zhang
Youjun Hu
Yingying Li
Hailin Zhao
Haiqing Liu
Bo Lyu
and the EAST Team
[1] Ida K and Fujita T 2018 Plasma Phys. Control. Fusion 60 033001
[2] Strait E J, Lao L L, Mauel M E, Rice B W, Taylor T S, Burrell K H, Chu M S, Lazarus E A, Osborne T H, Thompson S J, and Turnbull A D 1995 Phys. Rev. Lett. 75 4421
[3] Levinton F M, Zarnstorff M C, Batha S H, Bell M, Bell R E, Budny R V, Bush C, Chang Z, Fredrickson E, Janos A, Manickam J, Ramsey A, Sabbagh S A, Schmidt G L, Synakowski E J, and Taylor G 1995 Phys. Rev. Lett. 75 4417
[4] Heidbrink W W 2008 Phys. Plasmas 15 055501
[5] Berk H L, Borba D N, Breizman B N, Pinches S D, and Sharapov S E 2001 Phys. Rev. Lett. 87 185002
[6] Deng W, Lin Z, Holod I, Wang Z, Xiao Y, and Zhang H 2012 Nucl. Fusion 52 043006
[7] Breizman B N and Sharapov S E 2011 Plasma Phys. Control. Fusion 53 054001
[8] Chen W, Yu L, Liu Y, Ding X T, Xie H S, Zhu J, Yu L M, Ji X Q, Li J X, Li Y G, Yu D L, Shi Z B, Song X M, Cao J Y, Song S D, Dong Y B, Zhong W L, Jiang M, Cui Z Y, Huang Y, Zhou Y, Dong J Q, Xu M, Xia F, Yan L W, Yang Q W, Duan X R, and the H L A T 2014 Nucl. Fusion 54 104002
[9] Wang Z, Wang X, Dong J, Lei Y, Long Y, Mou Z, and Qu W 2007 Phys. Rev. Lett. 99 185004
[10] Wei L and Wang Z X 2014 Nucl. Fusion 54 043015
[11] Zhang W, Ma Z W, Zhu J, and Zhang H W 2019 Plasma Phys. Control. Fusion 61 075002
[12] Chang Z, Park W, Fredrickson E D, Batha S H, Bell M G, Bell R, Budny R V, Bush C E, Janos A, Levinton F M, McGuire K M, Park H, Sabbagh S A, Schmidt G L, Scott S D, Synakowski E J, Takahashi H, Taylor G, and Zarnstorff M C 1996 Phys. Rev. Lett. 77 3553
[13] Joffrin E, Challis C D, Conway G D, Garbet X, Gude A, Günter S, Hawkes N C, Hender T C, Howell D F, Huysmans G T A, Lazzaro E, Maget P, Marachek M, Peeters A G, Pinches S D, Sharapov S E, and JET-EFDA contributors 2003 Nucl. Fusion 43 1167
[14] Sharapov S E, Alper B, Yu F B, Berk H L, Borba D, Boswell C, Breizman B N, Challis C D, Baar M D, Luna E D L, Evangelidis E A, Hacquin S, Hawkes N C, Kiptily V G, Pinches S D, Sandquist P, Voitsekhovich I, Young N P, and JET-EFDA contributors 2006 Nucl. Fusion 46 S868
[15] Austin M E, Burrell K H, Waltz R E, Gentle K W, Gohil P, Greenfield C M, Groebner R J, Heidbrink W W, Luo Y, Kinsey J E, Makowski M A, McKee G R, Nazikian R, Petty C C, Prater R, Rhodes T L, Shafer M W, and Zeeland M A V 2006 Phys. Plasmas 13 082502
[16] Yang Y R, Chen W, Ye M Y, Yuan J B, and Xu M 2020 Nucl. Fusion 60 106012
[17] Wang T, Qiu Z, Zonca F, Briguglio S, and Vlad G 2020 Nucl. Fusion 60 126032
[18] Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008
[19] Todo Y 2019 Rev. Mod. Plasma Phys. 3 1
[20] Chen L, Zonca F, and Lin Y 2021 Rev. Mod. Plasma Phys. 5 1
[21] Sharapov S, Alper B, Berk H, Borba D, Breizman B, Challis C, Classen I, Edlund E, Eriksson J, Fasoli A, Fredrickson E, Fu G, Garcia-Munoz M, Gassner T, Ghantous K, Goloborodko V, Gorelenkov N, Gryaznevich M, Hacquin S, Heidbrink W, Hellesen C, Kiptily V, Kramer G, Lauber P, Lilley M, Lisak M, Nabais F, Nazikian R, Nyqvist R, Osakabe M, Thun C P V, Pinches S, Podesta M, Porkolab M, Shinohara K, Schoepf K, Todo Y, Toi K, Zeeland M V, Voitsekhovich I, White R, Yavorskij V, TG I E, and JET-EFDA contributors 2013 Nucl. Fusion 53 104022
[22] Zhong G, Hu L Q, Pu N, Zhou R J, Xiao M, Cao H R, Zhu Y B, Li K, Fan T S, Peng X Y, Du T F, Ge L J, Huang J, Xu G S, Wan B N, and Team E 2016 Rev. Sci. Instrum. 87 11D820
[23] Xu M, Zhao H L, Zang Q, Zhong G Q, Xu L Q, Liu H Q, Chen W, Huang J, Hu L Q, Xu G S, Gong X Z, Qian J P, Liu Y, Zhang T, Zhang Y, Sun Y W, Zhang X D, and Wan B N 2019 Nucl. Fusion 59 084005
[24] Xu M, Zhao H L, Zhang J Z, Xu L Q, Liu H Q, Li G Q, Zhong G Q, Zang Q, Hu L Q, Gong X Z, Xu G S, Zhang X D, Wan B N, and team EAST 2020 Nucl. Fusion 60 112005
[25] Edlund E M, Porkolab M, Kramer G J, Lin L, Lin Y, and Wukitch S J 2009 Phys. Rev. Lett. 102 165003
[26] Wu B, Hao B, White R, Wang J, Zang Q, Han X, and Hu C 2016 Plasma Phys. Control. Fusion 59 025004
Viewed
Full text


Abstract