Chin. Phys. Lett.  2021, Vol. 38 Issue (8): 084201    DOI: 10.1088/0256-307X/38/8/084201
Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud
Shaoxing Liu1, Xuanying Lai1, Ce Yang1, and J. F. Chen1,2*
1State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
2Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Cite this article:   
Shaoxing Liu, Xuanying Lai, Ce Yang et al  2021 Chin. Phys. Lett. 38 084201
Download: PDF(1196KB)   PDF(mobile)(1288KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A photon source with high-dimensional entanglement is able to bring increasing capacity of information in quantum communication. The dimensionality is determined by the chosen degree of freedom of the photons and is limited by the complexity of the physical systems. Here we propose a new type of high-dimensional entangled photon source, generated via path-indistinguishable scheme from a two-dimensional atomic cloud, which is prepared in a magneto-optical trap. To verify the photon source, we demonstrate experimentally the quantum state of the single photons heralded by its partner photon, with homodyne tomographic technology.
Received: 18 March 2021      Published: 02 August 2021
PACS:  14.70.Bh (Photons)  
  42.50.-p (Quantum optics)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 12074171), the Guangdong Key Project (Grant No. 2019ZT08X324), the Guangdong Innovation Project (Grant No. 2019KTSCX160), and Guangdong Provincial Key Laboratory (Grant No. 2019B121203002).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Shaoxing Liu
Xuanying Lai
Ce Yang
and J. F. Chen
[1] Bechmann-Pasquinucci H and Peres A 2000 Phys. Rev. Lett. 85 3313
[2] Cerf N J, Bourennane M, Karlsson A, and Gisin N 2002 Phys. Rev. Lett. 88 127902
[3] Kaszlikowski D, Gnaciński P, Żukowski M, Miklaszewski W, and Zeilinger A 2000 Phys. Rev. Lett. 85 4418
[4] Vértesi T, Pironio S, and Brunner N 2010 Phys. Rev. Lett. 104 060401
[5] Mair A, Vaziri A, Weihs G, and Zeilinger A 2001 Nature 412 313
[6] Erhard M, Fickler R, Krenn M, and Zeilinger A 2018 Light: Sci. & Appl. 7 17146
[7] Brendel J, Gisin N, Tittel W, and Zbinden H 1999 Phys. Rev. Lett. 82 2594
[8] Erhard M, Krenn M, and Zeilinger A 2020 Nat. Rev. Phys. 2 365
[9] Cozzolino D et al. 2019 Phys. Rev. Appl. 11 064058
[10] MacLean J P W, Donohue J M, and Resch K J 2018 Phys. Rev. Lett. 120 053601
[11] Donohue J M, Agnew M, Lavoie J, and Resch K J 2013 Phys. Rev. Lett. 111 153602
[12] O'Sullivan-Hale M N, Khan I A, Boyd R W, and Howell J C 2005 Phys. Rev. Lett. 94 220501
[13] Qiang X et al. 2018 Nat. Photon. 12 534
[14] Kaneda F, Suzuki H, Shimizu R, and Edamatsu K 2019 Opt. Express 27 1416
[15] Edgar M P et al. 2012 Nat. Commun. 3 984
[16] Trajtenberg-Mills S, Karnieli A, Voloch-Bloch N, Megidish E, Eisenberg H S, and Arie A 2020 Laser & Photon. Rev. 14 1900321
[17] Thyagarajan K et al. 2009 Phys. Rev. A 80 052321
[18] Srivathsan B, Gulati G K, Chng B, Maslennikov G, Matsukevich D, and Kurtsiefer C 2013 Phys. Rev. Lett. 111 123602
[19] Wang C, Lee C H, Kim Y, and Kim Y H 2020 Opt. Lett. 45 1802
[20] Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, and Osellame R 2010 Phys. Rev. Lett. 105 200503
[21] Zhukovsky S V, Helt L G, Kang D, Abolghasem P, Helmy A S, and Sipe J E 2012 Phys. Rev. A 85 013838
[22] Schaeff C et al. 2012 Opt. Express 20 16145
[23] Hu X M et al. 2016 Phys. Rev. Lett. 117 170403
[24] Li L et al. 2020 Science 368 1487
[25] Ding D S, Zhou Z Y, Shi B S, and Guo G C 2013 Nat. Commun. 4 2527
[26] Kolchin P, Du S, Belthangady C, Yin G Y, and Harris S E 2006 Phys. Rev. Lett. 97 113602
[27] Liao K, Yan H, He J, Du S, Zhang Z M, and Zhu S L 2014 Phys. Rev. Lett. 112 243602
[28] Boller K J, Imamoǧlu A, and Harris S E 1991 Phys. Rev. Lett. 66 2593
[29] Zhao L W, Guo X X, Liu C, Sun Y, Loy M M T, and Du S W 2014 Optica 1 84
[30] Han Z G, Qian P, Zhou L, Chen J F, and Zhang W 2015 Sci. Rep. 5 9126
[31] Qian P, Gu Z, Cao R, Wen R, Ou Z Y, Chen J F, and Zhang W 2016 Phys. Rev. Lett. 117 013602
[32] Yang C, Gu Z, Chen P, Qin Z, Chen J F, and Zhang W 2018 Phys. Rev. Appl. 10 054011
[33] Yan H, Zhu S L, and Du S W 2011 Chin. Phys. Lett. 28 070307
[34] Liu C et al. 2013 Opt. Express 21 9505
[35]Leonhardt U 1997 Measuring the Quantum State of Light (Cambridge: Cambridge University Press) p 87
[36] Gu Z, Yang C, and Chen J F 2019 Opt. Commun. 439 206
[37] Ariano G and Rasetti M 1987 Phys. Rev. D 35 1239
[38] Straka I et al. 2014 Phys. Rev. Lett. 113 223603
[39] Ježek M, Straka I, Mičuda M, Dušek M, Fiurášek J, and Filip R 2011 Phys. Rev. Lett. 107 213602
Full text